826 resultados para HIGH REFRACTIVE-INDEX
Resumo:
We present a nondestructive technique to predict the refractive index profiles of isotropic planar waveguides, on which a thin gold film is deposited to as the cladding. The negative dielectric constant of the metal results in significant differences of effective indices between TE and TM modes. The two polarized modes and a surface plasmon resonance (SPR) with abundant information of the surface index can be used to construct the refractive index profiles of single-mode and two-mode waveguides at a fixed wavelength. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Within the framework of classic electromagnetic theories, we have studied the sign of refractive index of optical medias with the emphases on the roles of the electric and magnetic losses and gains. Starting from the Maxwell equations for an isotropic and homogeneous media, we have derived the general form of the complex refractive index and its relation with the complex electric permittivity and magnetic permeability, i.e. n = root epsilon mu, in which the intrinsic electric and magnetic losses and gains are included as the imaginary parts of the complex permittivity and permeability, respectively, as epsilon = epsilon(r) + i(epsilon i) and mu = mu(r) + i mu(i). The electric and magnetic losses are present in all passive materials, which correspond, respectively, to the positive imaginary permittivity and permeability epsilon(i) > 0 and mu(i) > 0. The electric and magnetic gains are present in materials where external pumping sources enable the light to be amplified instead of attenuated, which correspond, respectively, to the negative imaginary permittivity and permeability epsilon(i) < 0 and mu(i) < 0. We have analyzed and determined uniquely the sign of the refractive index, for all possible combinations of the four parameters epsilon(r), mu(r), epsilon(i), and mu(i), in light of the relativistic causality. A causal solution requires that the wave impedance be positive Re {Z} > 0. We illustrate the results for all cases in tables of the sign of refractive index. One of the most important messages from the sign tables is that, apart from the well-known case where simultaneously epsilon < 0 and mu < 0, there are other possibilities for the refractive index to be negative n < 0, for example, for epsilon(r) < 0, mu(r) > 0, epsilon(i) > 0, and mu(i) > 0, the refractive index is negative n < 0 provided mu(i)/epsilon(i) > mu(r)/vertical bar epsilon(r)vertical bar. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We report femtosecond laser induced valence state and refractive index change in transparent Sin(3+)-doped fluoroaluminate glass. The effect of annealing on the induced changes was studied and the thermal stability of these changes was discussed. The results show that the femtosecond laser induced valence state change is more stable than the induced refractive index change. The observed phenomenon could be applied to design the thermally erasable or stable storage medium. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report refractive index change in a femtosecond laser irradiated Nd3+-doped phosphate glass. The effects of annealing temperature on the refractive index change of the glass have been investigated. Absorption spectra of the glass sample before and after femtosecond laser irradiation and subsequent annealing were measured. The results indicate that multiphoton absorption can undertake although there are intrinsic absorption for the glass in irradiation wavelength. The results may be useful for fabrication of three-dimensional integrated optics devices and waveguide laser devices in this glass. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Transmission terahertz time-domain spectroscopy (THz-TDS) measurements of carbon nanotube arrays are presented. A relatively thin film with vertically aligned multi-walled carbon nanotubes has been prepared and measured using THz-TDS. Experimental results were obtained from 80GHz to 2.5THz, and the sample has been characterized by extracting the relative permittivity of the carbon nanotubes. A combination of the Maxwell-Garnett and Drude models within the frequency range provide a good fit to the measured permittivity.
Resumo:
We experimentally demonstrate a frequency modulation locked servo loop, locked to a resonance line of an on-chip microdisk resonator in a silicon nitride platform. By using this approach, we demonstrate real-time monitoring of refractive index variations with a precision approaching 10(-7) RIU, using a moderate Q factor of 10(4). The approach can be applied for intensity independent, dynamic and precise index of refraction monitoring for biosensing applications.
Resumo:
In this paper, the effective coupling coefficient k(eff) and the self-coupling coefficient zeta(1) are introduced to describe the characteristic of gratings in a resonant situation when the effects of radiation and other partial waves coupling are considered. The dependence of these two coupling coefficients on grating tooth shapes and depths and the dimensions of graded refractive index (GRIN) waveguides is numerically analysed. The results show that the gratings with linear GRIN waveguides have the largest \k(eff)\. The possibility of realizing a complex-coupled DFB laser, even a pure gain or loss coupled DFB laser, employing only a real refractive index coupled grating is also discussed.
Resumo:
A novel structure of MMI coupler with different background refractive index has been designed. With stronger optical confinement in multimode waveguides, more guided modes are excited to improve imaging quality. Two-dimensional finite difference beam propagation method (2-D FDBPM) was used to simulate this new structure and had proven that its imaging quality, in terms of power uniformity and excess loss, is much better than conventional structure. This structure can be applied in SOI rib waveguides by deep etching method.
Resumo:
A rapid and simple analytical method was developed for the simultaneous and quantitative determination and separation of hydrophilic imidazolium ionic liquids (ILs) (1-butyl-3-methylimidazolium chloride, [C(4)mim]Cl; 1-hexyl-3-methylimidazolium chloride, [C(6)mim]Cl; 1-octyl-3-methylimidazolium chloride, [C(8)mim]Cl; 1-allyl-3-methylimidazolium chloride, [Amim]Cl; or 1-allyl-3-methylimidazolium bromide, [Amim]Br) with miscible ethyl acetate and EtOH and their mixtures using reverse phase liquid chromatography coupled with refractive index detection (RPLC-RI). The influence of 60 to 100% (volume percentage) methanol in the mobile phase on the IL systems ([C(4)mim]Cl, [C(6)mim]Cl, [C(8)mim]Cl, [Amim]Br, or [Amim]Cl)-ethyl acetate-EtOH was investigated.
Resumo:
We present an analytical method that yields the real and imaginary parts of the refractive index (RI) from low-coherence interferometry measurements, leading to the separation of the scattering and absorption coefficients of turbid samples. The imaginary RI is measured using time-frequency analysis, with the real part obtained by analyzing the nonlinear phase induced by a sample. A derivation relating the real part of the RI to the nonlinear phase term of the signal is presented, along with measurements from scattering and nonscattering samples that exhibit absorption due to hemoglobin.
Resumo:
We have recently developed a spectral re-shaping technique to simultaneously measure nonlinear refractive index and nonlinear absorption. In this technique, the information about the nonlinearities is encoded in the frequency domain, rather than in the spatial domain as in the conventional Z-scan method. Here we show that frequency encoding is much more robust with respect to scattering. We compare spectral re-shaping and Z-scan measurements in a highly scattering environment and show that reliable spectral re-shaping measurements can be performed even in a regime that precludes standard Z-scans.