985 resultados para HG(II) IONS
Resumo:
The pentadentate chelating agent, 2,6-diacetylpyridinebis(S-benzyldithiocarbazate) (H2SNNNS) reacts with zinc(II) and cadmium(II) ions forming stable complexes of empirical formula, [M(SNNNS)] (M=Zn2+, Cd2+; SNNNS2 =doubly deprotonated anionic form of the Schiff base). These complexes have been characterized by a variety of physico-chemical techniques. IR and H-1 NMR spectral evidence indicate that the Schiff base coordinates to the zinc(II) and cadmium(II) ions via the pyridine nitrogen atoms, the azomethine nitrogen atoms and the mercaptide sulfur atoms. The crystal and molecular structure of the zinc(II) complex has been determined by X-ray diffraction. The complex is a dimer in which the pyridine nitrogen atom,the azomethine nitrogen atom and the thiolate sulfur atom from one ligand coordinate to one of the zinc(II) ions whereas the azomethine and thiolate sulfur atoms from another ligand complete pentacoordination around the zinc(II) ion, the ligands being coordinated in their deprotonated forms. The coordination geometry about each zinc(II) can be considered as intermediate between a square-pyramid and trigonal-bipyramid. The cadmium(II) complex is also assigned with a dimeric structure. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The reaction of 2,6-diformyl-4-methylphenol with 1,3-bis(3-aminopropyl)tetramethyldisiloxane in the presence of MnCl2 in a 1:1:2 molar ratio in methanol afforded a dinuclear -chlorido-bridged manganese(II) complex of the macrocyclic [2+2] condensation product (H2L), namely, [Mn2Cl2(H2L)(HL)]Cl center dot 3H(2)O (1). The latter afforded a new compound, namely, [Mn2Cl2(H2L)(2)][MnCl4]center dot 4CH(3)CN center dot 0.5CHCl(3 center dot)0.4H(2)O (2), after recrystallisation from 1:1 CHCl3/CH3CN. The co-existence of the free and complexed azomethine groups, phenolato donors, mu-chlorido bridges, and the disiloxane unit were well evidenced by ESI mass spectrometry and FTIR spectroscopy and confirmed by X-ray crystallography. The magnetic measurements revealed an antiferromagnetic interaction between the two high-spin (S = 5/2, g = 2) manganese(II) ions through the mu-chlorido bridging ligands. The electrochemical behaviour of 1 and 2 has been studied, and details of their redox properties are reported. Both compounds act as catalysts or catalyst precursors in the solvent-free low-power microwave-assisted oxidation of selected secondary alcohols, for example, 1-phenylethanol, cyclohexanol, 2- and 3-octanol, to the corresponding ketones in the absence of solvent. The highest yield of 72% was achieved for 1-phenylethanol by using a maximum of 1% molar ratio of catalyst relative to substrate.
Resumo:
Two new tetranuclear complexes [Cu-4(mu-O)(L-1)-Cl-4] and [Cu-4(mu(4)-O)(L-2)(2)Cl-4] (2), where H2L1 is a macrocyclic ligand resulting from [2+2] condensation of 2,6-diformy1-4-methylphanol (DFF) and 1,3-bis(aminopropy1)tetramethyldisiloxane, and HL2 is a 1:2 condensation product: of DFF with trimethylsilyl p-aminobenzoate, have been prepared. The structures of the products were established by Xray diffraction. The complexes have been characterised by FTIR, UV/Vis spectroscopy, ES1 mass-spectrometry and magnetic susceptibility measurements. The latter revealed that the letrftriuclear complexes can be descr bed as two ferromagnetically coupled dinuclear units, in which the two copper(II) ions interact antiferromacinetically. The ccimpi.iunds act as homogeneous catalyst precursors for a number of single-pot reactions, including (I) hydrocarbaxylation, with CO, H2O and K2S2O8, of a variety of linear and cyclic (n = 5-8) alkanes into the corresponding Cn+1 carboxylic acids, (ii) peroxidative oxidation of cyclohexane, and (iii) solvent-free microwave-assisted oxidation of 1-phenyletha.nol.
Resumo:
The reaction of 2,6-diformyl-4-methylphenol with 1,3-bis(3-aminopropyl)tetramethyldisiloxane in the presence of MnCl2 in a 1:1:2 molar ratio in methanol afforded a dinuclear -chlorido-bridged manganese(II) complex of the macrocyclic [2+2] condensation product (H2L), namely, [Mn2Cl2(H2L)(HL)]Cl center dot 3H(2)O (1). The latter afforded a new compound, namely, [Mn2Cl2(H2L)(2)][MnCl4]center dot 4CH(3)CN center dot 0.5CHCl(3 center dot)0.4H(2)O (2), after recrystallisation from 1:1 CHCl3/CH3CN. The co-existence of the free and complexed azomethine groups, phenolato donors, mu-chlorido bridges, and the disiloxane unit were well evidenced by ESI mass spectrometry and FTIR spectroscopy and confirmed by X-ray crystallography. The magnetic measurements revealed an antiferromagnetic interaction between the two high-spin (S = 5/2, g = 2) manganese(II) ions through the mu-chlorido bridging ligands. The electrochemical behaviour of 1 and 2 has been studied, and details of their redox properties are reported. Both compounds act as catalysts or catalyst precursors in the solvent-free low-power microwave-assisted oxidation of selected secondary alcohols, for example, 1-phenylethanol, cyclohexanol, 2- and 3-octanol, to the corresponding ketones in the absence of solvent. The highest yield of 72% was achieved for 1-phenylethanol by using a maximum of 1% molar ratio of catalyst relative to substrate.
Resumo:
The reaction of the Schiff base (3,5-di-tert-butyl-2-hydroxybenzylidene)-2-hydroxybenzohydrazide (H3L) with copper(II) nitrate, acetate or metaborate has led to the isomeric complexes [Cu-3(L)(2)(MeOH)(4)] (1), [Cu-3(L)(2)(MeOH)(2)]2MeOH (2) and [Cu-3(L)(2)(MeOH)(4)] (3), respectively, in which the ligand L exhibits dianionic (HL2-, in 1) or trianionic (L3-, in 2 and 3) pentadentate 1O,O,N:2N,O chelation modes. Complexes 1-3 were characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography, electrochemical methods and variable-temperature magnetic susceptibility measurements, which indicated that the intratrimer antiferromagnetic coupling is strong in the three complexes and that there exists very weak ferromagnetic intermolecular interactions in 1 but weak antiferromagnetic intermolecular interactions in both 2 and 3. Electrochemical experiments showed that in complexes 1-3 the Cu-II ions can be reduced, in distinct steps, to Cu-I and Cu-0. All the complexes act as efficient catalyst precursors under mild conditions for the peroxidative oxidation of cyclohexane to cyclohexyl hydroperoxide, cyclohexanol and cyclohexanone, leading to overall yields (based on the alkane) of up to 31% (TON = 1.55x10(3)) after 6 h in the presence of pyrazinecarboxylic acid.
Resumo:
Adsorption of Cu(II), Ni(II), Pb(II) and Zn(II) ions from aqueous solutions by N-(3,4-dihydroxybenzyl) chitosan have been carried out. The Langmuir (L), Freundlich (F), Langmuir - Freundlich (LF), Redlich-Peterson (RP) and Tóth (T) adsorption isotherms models have been applied to fit the experimental data. Nonlinear regression computational program "Enzefitte", which is a library of the more commonly used adsorption isotherm equations for obtaining tabular outuput suitable for plotting theoretical of fitted isotherms, has been used to estimate the adsorption parameters. These parameters were used to calculate the amount adsorbed q calc., a function of concentration (C).
Resumo:
The interaction of mercury(II) with sulfathiazole has been analyzed. IR and NMR spectral studies suggest a coordination of Hg(II) with the Nthiazolic atom, unlike related Hg-sulfadrugs compounds. The complex was screened for its activity against Escherichia coli, showing an appreciable antimicrobial activity compared with the ligand.
Resumo:
The construction and analytical evaluation of a coated graphite-epoxy electrode sensitive to the zinc-1,10-phenantroline complex based on the [Zn(fen)3][tetrakis(4-chlorophenyl)borate]2 incorporated into a poly(vinylchloride) (PVC) matrix are described. A thin membrane film of this ion-pair, dibutylphthalate (DBPh) and PVC were deposited directly onto an electrically conductive graphite-epoxy support located inside a Perspex® tube. The best PVC polymeric membrane contains 65% (m/m) DBPh, 30% (m/m) PVC and 5% (m/m) of the ion-pair. This electrode shows a response of 19.5 mV dec-1 over the zinc(II) concentration range of 1.0 x 10-5 to 1.0 x 10-3 mol L-1 in 1,10-phenantroline medium, at pH 6.0. The response time was less than 20 seconds and the lifetime of this electrode was more than four months (over 1200 determinations by each polymeric membrane). It was successfully used as an indicator electrode in the potentiometric precipitation titration of zinc(II) ions.
Resumo:
The adsorption of Cu(II) ions from aqueous solution by chitosan using a column in a closed hydrodynamic flow system is described. The adsorption capacities as a function of contact time of copper(II) ions and chitosan were determined by varying the ionic strength, temperature and the flow of the metal solution. The Langmuir model reproduced the adsorption isothermal data better than the Freundlich model. The experimental kinetic data correlate properly with the second-order kinetic reaction for the whole set of experimental adsorption conditions. The rate constants exercise great influence on the time taken for equilibrium to be established by complexation or electrostatic interaction between the amino groups of chitosan and the metal.
Resumo:
A simple and rapid conductometric method for captopril determination using copper(II) sulphate solution as titrant was developed. The method was based on the chemical reaction between captopril and Cu(II) ions yielding a precipitate. The conductance of the solution was monitored as a function of the added volume of titrant. The method was applied with success for captopril determination in three pharmaceutical formulations. The relative standard deviation for six successive measurements was smaller than 0.5%. Recovery values from three samples, ranging from 97.7 to 103%, were obtained.
Resumo:
A method employing chitosan as complexant agent in the removal of copper(II) ions generally present in the Brazilian cachaça samples is herein proposed. The efficiency of this method is attributed to its high capacity of metal cations adsorption, mainly due to presence of hydroxyl and amine groups that can serve as chelating sites. The removal of copper(II) ions from this alcoholic beverage was efficient employing either in column and batch system. The analysis were carried out employing the flame atomic absorption spectrometry and the remaining copper(II) concentrations in the treated cachaça were lower than LOD of FAAS technique.
Resumo:
A simultaneous solid phase extraction procedure for enrichment of Cu(II), Cd(II) and Mn(II) has been developed. The method is based on adsorption of Cu(II), Cd(II) and Mn(II) ions on polyethylene glycol-silica gel pre-conditioned with acetate buffer (pH 5.5). The adsorbed metal ions are eluted with nitric acid (1 mol L -1) and determined by flame atomic absorption spectrometry. The calibration graph was linear in the range of 2-140 ng mL-1 for Cu(II), 1-40 ng mL-1 for Cd(II) and 4-100 ng mL-1 for Mn(II). The limits of detection were 0.66, 0.33 and 1.20 ng mL-1 for Cu(II), Cd(II) and Mn(II), respectively.
Resumo:
The crystal and molecular structures of [bis(5-chloro-2-methoxybenzoate)tetraaquamanganese(II)], [pentaaqua(5-chloro-2-methoxybenzoato)cobalt(II)] (5-chloro-2-methoxybenzoate), [pentaaqua(5-chloro-2-methoxybenzoato)nickel(II)] (5-chloro-2-methoxybenzoate) and [aquabis(5-chloro-2-methoxybenzoate)zinc(II)] monohydrate were determined by a single-crystal X-ray analysis. Mn(H2O)4L2 (where L = C8H6ClO3) crystallizes in the monoclinic system, space group P21/c. [Co(H2O)5L]L and [Ni(H2O)5L]L both are isostructural, space group P212121. The crystals of [Zn(H2O)L2] H2O are monoclinic, space group Pc. Mn(II) ion is positioned at the crystallographic symmetry center. Mn(II) and Co(II) ions adopt the distorted octahedral coordination but Zn(II) tetrahedral one.The carboxylate groups in the complexes with M(II) cations function as monodentate, bidentate and/or free COO-groups. The ligands exist in the crystals as aquaanions. The complexes of 5-chloro-2-methoxybenzoates with Mn(II), Co(II) and Zn(II) form bilayer structure.
Resumo:
Bis-(µ2-oxo)-tetrakis{[1-feniltriazene-1,3-diil)-2-(phenyltriazenil)benzene copper(II) is a tetranuclear complex which shows four Cu(II) ions coordinated by four 1,2-bis(phenyltriazene)benzene bridged ligands, with one diazoaminic deprotonated chain, and two O2- ligands. The complex reduces at E1/2 = -0.95 V vs Fc+/Fc, a two electrons process. Cyclic voltammetric and spectroelectrochemical studies showed a reversible process. When immobilized on carbon paste electrode, the complex electrocatalyses the reduction of O2 dissolved on aqueous solution at -0.3 V vs SCE potential. The obtained current shows linearity with O2 concentration.
Resumo:
The complexes of 2-methoxyhenoxyacetates of Mn(II), Co(II), Ni(II) and Cu(II)with the general formula: M(C9H9O4)3·4H2O, where M(II) = Mn, Co, Ni and Cu have been synthesized and characterized by elemental analysis, IR spectroscopy, magnetic and thermogravimetric studies and also X-ray diffraction measurements. The complexes have colours typical for M(II) ions (Mn(II) - a pale pink, Co(II) - pink, Ni(II) - green, and Cu(II) - blue). The carboxylate group binds as monodentate and bidentate ligands. On heating to 1273K in air the complexes decompose in the same way. At first, they dehydrate in one step to anhydrous salts, that next decompose to the oxides of respective metals with the intermediate formation of the oxycarbonates. Their solubility in water at 293K is of the order of 10-5 mol·dm-3. The magnetic moments of analysed complexes were determined in the range of 76-303K. The results reveal them to be high-spin complexes of weak ligand fields.