69 resultados para HETEROPOLY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structure of H3PMo6W6O40 3C2H6O was determined by X-ray crystallography and refined to R = 0.0698 based on 2279 observed reflections to give unit cell parameters a = 16.48(2)Angstrom, c = 25.205(5)Angstrom , gamma = 120 degrees, hexagonal, space group R (3) over bar. The organic solvent molecules were characterized also by IR, H NMR spectra. Weak interaction existed between the organic solvent and the heteropoly acid in the secondary structure. The novel compound showed different behaviours in solubility, oxidizability and photosensitivity in comparison with classical dodeca heteropolyacid of molybdenum and tungsten. (C) 1998 Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heteropoly acids (HPAs), such as dodecatungstosilicic acid (SiW12), adsorb strongly on to activated carbons. The surface chemical properties of the activated carbons have a pronounced effect on the adsorption of HPAs. To obtain activated carbons with the desired surface chemical properties, modification with mineral acids has been applied. The adsorption isotherms of SiW12 from aqueous solution and various acidic media on to the various carbons have been studied. On the basis of the results obtained, an adsorption model for HPAs from acidic media is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Six new compounds, alpha,beta-KaHb[GeW(9)M(3)(H2O)(3)O-37]. xH(2)O(M = Al, Ga, In; a + b = 7) and alpha-K9H5[Ge2W18Ga6(H2O)(3)O-74]. 20H(2)O, were synthesized from the lacunary precursors a and beta-GeW9O3410- and characterized by elemental analysis, spectroscopy and electrochemistry. Tungsten-183 NMR spectra of the title complexes consist of two lines with intensity ratio 2:1 as expected for trisubstituted heteropoly anions. The intensity ratio of alpha-Ga compound is 1:2, which is different from others(a:1). With the help of FAB mass spectrum, we concluded that it is a dimer with D-3h structure in aqueous, and the others exist by monomers with C-3v structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of new catalysts, K-14[Ln(As2W17O61)(2)]. xH(2)O (Ln = La, Pr, Sm, Eu, Gd, Tb, Dy, Tm and Yb) which can electrocatalyze reduction of nitrite are presented and their electrochemical behavior is described in this paper. Bis(2:17-arsenotungstate) lanthanates which are monovacant Dawson derivatives, exhibit two 2-electron and one 1-electron waves, attributed to electron addition and removal from the tungsten-oxide framework that comprises each anion structure. The formal potentials of redox couples are dependent on solution pH. Double-hump principle of formal potentials takes effect with increasing atomic number of lanthanide elements following their special electronic shell structure. The third waves of all the heteropolyanions have good electrocatalytic activities for nitrite reduction at pH 5.0.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrodes modified with isopolymolybdic acid+polyaniline film, which exhibit high stability and activity in aqueous acidic solution, have been prepared successfully using two methods: one-step synthesis by electrochemical polymerization at a constant applied potential of +0.80 V/SCE or by cycling the potential at 100 mV/s between -0.12 and +0.85 V in 0.5 M H2SO4 containing 5.0x10(-2) M aniline and 5.0x10(-3) M H4Mo8O26, or two-step synthesis by doping the polyaniline film electrode with isopoly acid (IPA) under a cycling potential between -0.20 and +0.40 V in 0.5 M H2SO4 containing the H4Mo8O26 dopant. The thickness of the film and the amount of dopant in the polyaniline film can be controlled by experimental parameters such as the charge, time and the ratio of aniline to IPA in the solution. The experimental results show that electrodes modified with isopolymolybdic acid+polyaniline film using both methods have a strong catalytic effect on the reduction of chlorate anions. Comparison of the two methods of modification shows that the catalytic effect at the modified electrode prepared by the two-step method is greater than that at the electrode prepared by the one-step method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The single crystal of heteropoly blue, HsSiMo12O40.12H2O, the reduced product of molybdenum-silicon heteropoly acid, was prepared by electrochemical reduction and evaporation in nitrogen atmosphere. The Crystal structure of the product was determined. The heteropoly blue H8SiMo12O40.12H2O, Crystallizes space group P1BAR a = 1.3769 (3) nm, b = 1.4346 (4) nm, c = 1.4134 (4) nm, alpha = 120.47 (2)-degrees, beta = 110.70 (2)-degrees, gamma = 66.11 (2)-degrees, Z = 2, R = 0.0608. The heteropoly blue anion was determined to have Keggin Structure and alpha-isomer and it remained the structure of the unreduced heteropoly acid anion. But the distortion of the structure and the changes of bond length and bond angle take place obviously. The four Mo5+ Positions were determined in the structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface environment and structural evolution of silica supported phosphotungstic acid (H3PW12O40) catalysts have been investigated as a function of acid loading. H3PW12O40 clusters are deposited intact upon the silica surface, adopting a Stranksi-Krastanov growth mode forming a two-dimensional adlayer which saturates at 45wt% acid. Intimate contact with the silica support perturbs the local chemical environment of three tungstate centres, which become inequivalent with those in the remaining cluster, suggesting an adsorption mode involving three terminal W==O groups. Above the monolayer, H3PW12O40 clusters form three-dimensional crystallites with physico-chemical properties indistinguishable from those in the bulk heteropoly acid. These H3PW12O40/SiO2 materials are efficient for the solventless isomerisation of α-pinene under mild reaction conditions. Activity scales directly with the number of accessible perturbed tungstate sites at the silica interface; these are the active species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter provides a general overview of recent studies on catalytic conversion of fructose, glucose, and cellulose to platform chemicals over porous solid acid and base catalysts, including zeolites, ion-exchange resins, heteropoly acids, as well as structured carbon, silica, and metal oxide materials. Attention is focused on the dehydration of glucose and fructose to HMF, isomerization of glucose to fructose, hydrolysis of cellulose to sugar, and glycosidation of cellulose to alkyl glucosides. The correlation of porous structure, surface properties, and the strength or types of acid or base with the catalyst activity in these reactions is discussed in detail in this chapter.