748 resultados para HER2-oncogene
Resumo:
The tumorigenesis of pituitary adenomas is poorly understood. Mutations of the PIK3CA proto-oncogene, which encodes the p110-α catalytic subunit of PI3K, have been reported in various types of human cancers regarding the role of the gene in cell proliferation and survival through activation of the PI3K/Akt signaling pathway. Only one Chinese study described somatic mutations and amplification of the PIK3CA gene in a large series of pituitary adenomas. The aim of the present study was to determine genetic alterations of PIK3CA in a second series that consisted of 33 pituitary adenomas of different subtypes diagnosed by immunohistochemistry: 6 adrenocorticotropic hormone-secreting microadenomas, 5 growth hormone-secreting macroadenomas, 7 prolactin-secreting macroadenomas, and 15 nonfunctioning macroadenomas. Direct sequencing of exons 9 and 20 assessed by qPCR was employed to investigate the presence of mutations and genomic amplification defined as a copy number ≥4. Previously identified PIK3CA mutations (exon 20) were detected in four cases (12.1%). Interestingly, the Chinese study reported mutations only in invasive tumors, while we found a PIK3CA mutation in one noninvasive corticotroph microadenoma. PIK3CA amplification was observed in 21.2% (7/33) of the cases. This study demonstrates the presence of somatic mutations and amplifications of the PIK3CA gene in a second series of pituitary adenomas, corroborating the previously described involvement of the PI3K/Akt signaling pathway in the tumorigenic process of this gland.
Resumo:
A large body of literature documents in both mice and Drosophila the involvement of Insulin pathway in growth regulation, probably due to its role in glucose and lipid import, nutrient storage, and translation of RNAs implicated in ribosome biogenesis (Vanhaesebroeck et al. 2001). Moreover several lines of evidence implicate this pathway as a causal factor in cancer (Sale, 2008; Zeng and Yee 2007; Hursting et al., 2007; Chan et al., 2008). With regards to Myc, studies in cell culture have implied this family of transcription factors as regulators of the cell cycle that are rapidly induced in response to growth factors. Myc is a potent oncogene, rearranged and overexpressed in a wide range of human tumors and necessary during development. Its conditional knock-out in mice results in reduction of body weight due to defect in cell proliferation (Trumpp et al. 2001). Evidence from in vivo studies in Drosophila and mammals suggests a critical function for myc in cell growth regulation (Iritani and Eisenman 1999; Johnston et al. 1999; Kim et al. 2000; de Alboran et al. 2001; Douglas et al. 2001). This role is supported by our analysis of Myc target genes in Drosophila, which include genes involved in RNA binding, processing, ribosome biogenesis and nucleolar function (Orain et al 2003, Bellosta et al., 2005, Hulf et al, 2005). The fact that Insulin signaling and Myc have both been associated with growth control suggests that they may interact with each other. However, genetic evidence suggesting that Insulin signaling regulates Myc in vivo is lacking. In this work we were able to show, for the first time, a direct modulation of dMyc in response to Insulin stimulation/silencing both in vitro and in vivo. Our results suggest that dMyc up-regulation in response to DILPs signaling occurs both at the mRNA and potein level. We believe dMyc protein accumulation after Insulin signaling activation is conditioned to AKT-dependent GSK3β/sgg inactivation. In fact, we were able to demonstate that dMyc protein stabilization through phosphorylation is a conserved feature between Drosophila and vertebrates and requires multiple events. The final phosphorylation step, that results in a non-stable form of dMyc protein, ready to be degraded by the proteasome, is performed by GSK3β/sgg kinase (Sears, 2004). At the same time we demonstrated that CKI family of protein kinase are required to prime dMyc phosphorylation. DILPs and TOR/Nutrient signalings are known to communicate at several levels (Neufeld, 2003). For this reason we further investigated TOR contribution to dMyc-dependent growth regulation. dMyc protein accumulates in S2 cells after aminoacid stimulation, while its mRNA does not seem to be affected upon TORC1 inhibition, suggesting that the Nutrient pathway regulates dMyc mostly post-transcriptionally. In support to this hypothesis, we observed a TORC1-dependent GSK3β/sgg inactivation, further confirming a synergic effect of DILPs and Nutrients on dMyc protein stability. On the other hand, our data show that Rheb but not S6K, both downstream of the TOR kinase, contributes to the dMyc-induced growth of the eye tissue, suggesting that Rheb controls growth independently of S6K.. Moreover, Rheb seems to be able to regulate organ size during development inducing cell death, a mechanism no longer occurring in absence of dmyc. These observations suggest that Rheb might control growth through a new pathway independent of TOR/S6K but still dependent on dMyc. In order to dissect the mechanism of dMyc regulation in response to these events, we analyzed the relative contribution of Rheb, TOR and S6K to dMyc expression, biochemically in S2 cells and in vivo in morphogenetic clones and we further confirmed an interplay between Rheb and Myc that seems to be indipendent from TOR. In this work we clarified the mechanisms that stabilize dMyc protein in vitro and in vivo and we observed for the first time dMyc responsiveness to DILPs and TOR. At the same time, we discovered a new branch of the Nutrient pathway that appears to drive growth through dMyc but indipendently from TOR. We believe our work shed light on the mechanisms cells use to grow or restrain growth in presence/absence of growth promoting cues and for this reason it contributes to understand the physiology of growth control.
Resumo:
Background. Neuroblastoma is the most deadly solid tumor of childhood. In the 25% of cases it is associated with MYCN amplification (MA), resulting in the disregulation of several genes involved in cancer progression, chemotherapy resistance and poor prognosis causing the disregulation of several genes involved in cancer progression and chemotherapy resistance and resulting in a poor prognosis. Moreover, in this contest, therapy-related p53 mutations are frequently found in relapsed cases conferring an even stronger aggressiveness. For this reason, the actual therapy requires new antitumor molecules. Therefore, rapid, accurate, and reproducible preclinical models are needed to evaluate the evolution of the different subtypes and the efficacy of new pharmacological strategies. Procedures. We report the real-time tumorigenesis of MA Neuroblastoma mouse models: transgenic TH-MYCN mice and orthotopic xenograft models with either p53wt or p53mut, by non-invasive micro PET and bioluminescent imaging, respectively. Characterization of MYCN amplification and expression was performed on every collected sample. We tested the efficacy of a new MYCN inhibitor in vitro and in vivo. Results. MicroPET in TH-MYCN mice permitted the identification of Neuroblastoma at an early stage and offered a sensitive method to follow metabolic progression of tumors. The MA orthotopic model harboring multitherapy-related p53 mutations showed a shorter latency and progression and a stronger aggressiveness respect to the p53wt model. The presence of MA and overexpression was confirmed in each model and we saw a better survival in the TH-MYCN homozigous mice treated with the inhibitor. Conclusions. The mouse models obtained show characteristics of non-invasiveness, rapidity and sensitivity that make them suitable for the in vivo preclinical study of MA-NB. In particular, our firstly reported p53mut BLI xenograft orthotopic mouse model offers the possibility to evaluate the role of multitherapy-related p53 mutations and to validate new p53 independent therapies for this highly aggressive Neuroblastoma subtype. Moreover, we have shown potential clinical suitability of an antigene strategy through its cellular and molecular activity, ability to specifically inhibit transcription and in vivo efficacy with no evidence of toxicity.
Resumo:
L’insorgenza di fenomeni coinvolti nello sviluppo della farmacoresistenza costituisce al momento la principale causa di mancata risposta al trattamento chemioterapico nell’osteosarcoma. Questo è in parte dovuto ad una sovraespressione di diversi trasportatori ABC nelle cellule tumorali che causano un aumento dell’efflusso extracellulare del chemioterapico e pertanto una ridotta risposta al trattamento farmacologico. L'oncogene C-MYC è coinvolto nella resistenza al metothrexate, alla doxorubicina e al cisplatino ed è un fattore prognostico avverso, se sovraespresso al momento della diagnosi, in pazienti affetti da osteosarcoma. C-MYC è in grado di regolare l'espressione di diversi trasportatori ABC, probabilmente coinvolti nella resistenza ai farmaci nell’osteosarcoma, e questo potrebbe spiegare l’impatto prognostico avverso dell’oncogene in questo tumore. L’espressione genica di C-MYC e di 16 trasportatori ABC, regolati da C-MYC e / o responsabili dell'efflusso di diversi chemioterapici, è stata valutata su due diverse casistiche cliniche e su un pannello di linee cellulari di osteosarcoma umano mediante real-time PCR. L'espressione della proteina è stata valutata per i 9 trasportatori ABC risultati più rilevanti.Infine l'efficacia in vitro di un inibitore, specifico per ABCB1 e ABCC1, è stata valutata su linee cellulari di osteosarcoma. ABCB1 e ABCC1 sono i trasportatori più espressi nelle linee cellulari di osteosarcoma. ABCB1 è sovraespresso al momento della diagnosi in circa il 40-45% dei pazienti affetti da osteosarcoma e si conferma essere un fattore prognostico avverso se sovraespresso al momento della diagnosi. Pertanto ABCB1 diventa il bersaglio di elezione per lo sviluppo di strategie terapeutiche alternative, nel trattamento dell’osteosarcoma, atte al superamento della farmacoresistenza. L’inibizione dell'attività di tale trasportatore causa un aumento della sensibilità al trattamento chemioterapico nelle linee cellulari di osteosarcoma farmacoresistenti, indicando questo approccio come una possibile strategia per superare il problema della mancata risposta al trattamento farmacologico nei pazienti con osteosarcoma che sovraesprimono ABCB1.
Resumo:
Targeting of the HER2 protein in human breast cancer represents a major advance in oncology but relies on measurements of total HER2 protein and not HER2 signaling network activation. We used reverse-phase protein microarrays (RPMA) to measure total and phosphorylated HER2 in the context of HER family signaling to understand correlations between phosphorylated and total levels of HER2 and downstream signaling activity.
Resumo:
BACKGROUND Her2 expression and amplification occurs in a significant subset of gastro-esophageal carcinomas. Her2 is a client protein of molecular chaperones, e.g. heat shock protein (HSP) 90, rendering targeted therapies against Her2/HSP90 an interesting approach. This study aimed to investigate the role and relationship of Her2 and HSP90 in gastric and gastro-esophageal adenocarcinomas. MATERIAL AND METHODS Immunohistochemical determination of HSP90 and Her2 expression was performed on 347 primary resected tumors. Her2 amplification was additionally determined by fluorescence in situ hybridization for all cases. Expression and amplification results were correlated with pathologic parameters (UICC pTNM category, tumor grading) and survival. RESULTS Elevated Her2 copy numbers were observed in 87 tumors, 21 of them showing amplification. 174 tumors showed Her2 immunoreactivity/expression. HSP 90 immunoreactivity was found in 125 tumors. There was no difference between gastric carcinomas and carcinomas of the gastroesophageal junction regarding Her2 or HSP90. Both high HSP90 and Her2 expression/amplification were associated with earlier tumor stages (p<0.01), absence of lymph node metastases (p<0.02) and Laurens intestinal type (p<0.001). HSP90 correlated with Her2 expression and amplification (p<0.001 each). Expressions of HSP90 and Her2, but not Her2 amplification were associated with better prognosis (p=0.02; p=0.004; p=0.802). Moreover, Her2 expression was an independent prognostic factor for overall survival in the subgroup of gastric carcinoma patients (p=0.014) besides pT category, pN category and distant metastases. CONCLUSION Her2 expression and gene amplification occurred in a significant subset of cases. Our results suggest a favorable prognostic impact of Her2 expression. This warrants further investigations regarding the significance of Her2 non-amplified tumors showing Her2 immunoreactivity and the definition of Her2 status in gastric cancers. Moreover, the correlation of Her2 expression with the expression of Her2 chaperoning HSP90 may indicate a synergistic regulation. Targeting HSP90 with or without Her2 may offer additional therapeutic options for gastric carcinoma treatment.
Resumo:
Medulloblastoma is the most common malignant brain tumor of childhood. Despite numerous advances, clinical challenges range from recurrent and progressive disease to long-term toxicities in survivors. The lack of more effective, less toxic therapies results from our limited understanding of medulloblastoma growth. Although TP53 is the most commonly altered gene in cancers, it is rarely mutated in medulloblastoma. Accumulating evidence, however, indicates that TP53 pathways are disrupted in medulloblastoma. Wild-type p53-induced phosphatase 1 (WIP1 or PPM1D) encodes a negative regulator of p53. WIP1 amplification (17q22-q23) and its overexpression have been reported in diverse cancer types. We examined primary medulloblastoma specimens and cell lines, and detected WIP1 copy gain and amplification prevalent among but not exclusively in the tumors with 17q gain and isochromosome 17q (i17q), which are among the most common cytogenetic lesions in medulloblastoma. WIP1 RNA levels were significantly higher in the tumors with 17q gain or i17q. Immunoblots confirmed significant WIP1 protein in primary tumors, generally higher in those with 17q gain or i17q. Under basal growth conditions and in response to the chemotherapeutic agent, etoposide, WIP1 antagonized p53-mediated apoptosis in medulloblastoma cell lines. These results indicate that medulloblastoma express significant levels of WIP1 that modulate genotoxic responsiveness by negatively regulating p53.
Resumo:
INTRODUCTION: Once metastasis has occurred, the possibility of completely curing breast cancer is unlikely, particularly for the 30 to 40% of cancers overexpressing the gene for HER2/neu. A vaccine targeting p185, the protein product of the HER2/neu gene, could have therapeutic application by controlling the growth and metastasis of highly aggressive HER2/neu+ cells. The purpose of this study was to determine the effectiveness of two gene vaccines targeting HER2/neu in preventive and therapeutic tumor models. METHODS: The mouse breast cancer cell line A2L2, which expresses the gene for rat HER2/neu and hence p185, was injected into the mammary fat pad of mice as a model of solid tumor growth or was injected intravenously as a model of lung metastasis. SINCP-neu, a plasmid containing Sindbis virus genes and the gene for rat HER2/neu, and Adeno-neu, an E1,E2a-deleted adenovirus also containing the gene for rat HER2/neu, were tested as preventive and therapeutic vaccines. RESULTS: Vaccination with SINCP-neu or Adeno-neu before tumor challenge with A2L2 cells significantly inhibited the growth of the cells injected into the mammary fat or intravenously. Vaccination 2 days after tumor challenge with either vaccine was ineffective in both tumor models. However, therapeutic vaccination in a prime-boost protocol with SINCP-neu followed by Adeno-neu significantly prolonged the overall survival rate of mice injected intravenously with the tumor cells. Naive mice vaccinated using the same prime-boost protocol demonstrated a strong serum immunoglobulin G response and p185-specific cellular immunity, as shown by the results of ELISPOT (enzyme-linked immunospot) analysis for IFNgamma. CONCLUSION: We report herein that vaccination of mice with a plasmid gene vaccine and an adenovirus gene vaccine, each containing the gene for HER2/neu, prevented growth of a HER2/neu-expressing breast cancer cell line injected into the mammary fat pad or intravenously. Sequential administration of the vaccines in a prime-boost protocol was therapeutically effective when tumor cells were injected intravenously before the vaccination. The vaccines induced high levels of both cellular and humoral immunity as determined by in vitro assessment. These findings indicate that clinical evaluation of these vaccines, particularly when used sequentially in a prime-boost protocol, is justified.
Resumo:
PURPOSE The molecular chaperone heat shock protein 90 (HSP90) plays an important role in several types of tumors also participating in the modulation of the activity of receptor tyrosine kinases activity such as members of the Her family. We evaluated the significance of HSP90 and Her2 expression in colon cancer. METHODS HSP90 and Her2 expression was determined by immunohistochemistry and by fluorescence in situ hybridization (FISH) on 355 primary resected colon carcinomas. Results were correlated with pathologic features (Union for International Cancer Control (UICC) pTNM category, tumor localisation, tumor differentiation), additional molecular genetic characteristics (BRAF, KRAS mutational status, mismatch repair genes (MMR)), and survival. RESULTS HSP90 immunoreactivity was observed in various degrees. Fifty-one cases (14 %) were positive for Her2 (score 2+ and 3+) with 16/43 cases with Her2 2+ staining pattern showing amplification of Her2 determined by FISH. There was a significant correlation between high HSP90 expression and Her2 overexpression (p = 0.011). High HSP90 expression was associated with earlier tumor stages (p = 0.019), absence of lymph node (p = 0.006), and absence of distant metastases (p = 0.001). Patients with high tumoral HSP90 levels had a better survival (p = 0.032), but this was not independent from other prognostic relevant pathologic parameters. Her2 expression was not associated with any of the investigated histopathological, molecular, or clinical parameters. CONCLUSIONS High HSP90 levels are reflecting lower malignant potential in colon cancer. Her2 positivity can be observed in a small number of cases. Targeting HSP90 and/or Her2 may be an alternative therapeutic approach in colon cancer in a subset of patients.
Resumo:
Her2 overexpression and amplification can be found in a significant subset of esophageal adenocarcinomas. The activity of Her2 has been shown to be modulated by molecular chaperones such as HSP90. We analyzed expression/amplification data for HSP90 and Her2 on 127 primary resected esophageal adenocarcinomas in order to evaluate a possible relationship between these two molecules. HSP90 expression determined by immunohistochemistry was observed in various levels. Thirty nine (39) tumors (30.7%) were classified as Her2-positive according to their immunoreactivity and amplification status. There was a significant correlation between HSP90 expression and Her2-status (p = 0.008). This could also be demonstrated by quantitative protein expression analysis with reverse phase protein arrays (r = 0.9; p < 0.001). Her2-status was associated withpT-category (p = 0.041), lymph node metastases (p = 0.049) and tumor differentiation (p = 0.036) with a higher percentage of cases with negative Her2 status in lower tumor stagesA negative Her2-status was also associated with better survival in univariate and multivariate analysis (p = 0.001 and p = 0.014). For HSP90, no associations between clinical and pathological parameters were found. The observed association between HSP90 expression and Her2 suggests a co-regulation of these molecules in at least a subset of esophageal adenocarcinomas. Anti-HSP90 drugs, which recently have been introduced in cancer treatment, may also be an option for these tumors by targeting HSP90 alone or in combination with Her2.
Resumo:
Several (pre-) clinical trials are currently investigating the benefit of HER2-targeted therapy in urothelial bladder cancer (UBC). Patients with HER2 amplified UBC could potentially profit from these therapies. However, little is known about histomorphology, HER2 protein expression patterns and occurrence of alterations in the HER2 gene in their tumors. Among 150 metastasizing primary UBC, 13 HER2 amplified tumors were identified. Their histopathological features were compared with 13 matched, non-amplified UBC. HER2 protein expression was determined by immunohistochemistry. The 26 tumors were screened for mutations in exons 19 and 20 of the HER2 gene. UBC with HER2 amplification presented with a broad variety of histological variants (median 2 vs. 1), frequently featured micropapillary tumor components (77 % vs. 8 %) and demonstrated a high amount of tumor associated inflammation. Immunohistochemically, 10 of 13 (77 %) HER2 amplified tumors were strongly HER2 protein positive. Three tumors (23 %) were scored as HER2 negative. One of the HER2 amplified tumors harbored a D769N mutation in exon 19 of the HER2 gene; all other tested tumors were wild type. In conclusion, HER2 amplified UBC feature specific morphological characteristics. They frequently express the HER2 protein diffusely and are, therefore, promising candidates for HER2 targeted therapies. The detection of mutations at the HER2 locus might add new aspects to molecular testing of UBC.
Resumo:
Genetic analysis, both karyotyping and comparative genomic hybridization, of prostate cancer cell lines and specimens have revealed multiple areas of concordant increases in DNA content. An increase of DNA in specific regions of the genome in cancer is often associated with the amplification of oncogenes. Based on these observations we have hypothesized that oncogenes are involved in the initiation or progression of prostate cancer. An expression cloning approach was utilized to identify candidate oncogenes in prostate cancer. ^ A full-length, unidirectional cDNA expression library was constructed from DU145 prostate cancer cells. The cDNA library was screened using CP12, a rat prostate epithelial cell line. In soft agarose assays, CP12 (parental or vector transfected) do not form colonies. However, upon the introduction of a number of known oncogenes CP12 becomes anchorage independent in soft agarose. Based on this in-vitro phenotypic shift, a DU145 cDNA library was stably transfected into CP12, and selected for anchorage independence. Two hundred fifty nine anchorage independent clones were isolated. Some colonies contained more than one insert, bringing the candidate oncogene pool to approximately 400. Seven inserts were sequenced at random. Using the sequences obtained, GenBank was screened, and matches were found with p53, PARG1, a mitochondrial ATPase, RNF6, and three unknown genes that mapped to Unigene clusters. As the pool of cDNA inserts appeared promising, overexpressed genes were further selected. From 259 clones, 17 clones were overexpressed more than 6-fold in DU145 compared to Normal Prostate. From the 17 clones, 12 cDNA inserts were strongly expressed in DU145 and were isolated for sequencing. ^ Two of the sequences, 1G6 and 3E9, were identical. Expression of 1G6/2G9/3E9 was tested by RT-PCR. 1G6/2G9/3E9 was not expressed in normal prostate, but was expressed in all prostate cancer cell lines tested as well as six prostate cancer samples. When retransfected into CP12, 1G6/2G9/3E9 induced the formation of foci and anchorage independent colonies. Thus, functional and expression data suggest that 1G6/2G9/3E9 may be a prostate cancer oncogene. ^
Resumo:
Metastasis, the major cause of morbidity and mortality in most cancers, is a highly organized and organ-selective process. The receptor tyrosine kinase HER2 enhances tumor metastasis, however, its role in homing to metastatic organs is poorly understood. The chemokine receptor CXCR4 has recently been shown to mediate the malignant cancer cells to specific organs. Here we show that HER2 enhances the expression of CXCR4 by increasing CXCR4 protein synthesis and inhibiting its degradation. We also observed significant correlation between HER2 and CXCR4 expression in human breast tumor tissues, and an association between CXCR4 expression and a poor overall survival rate in patients with breast cancer. Furthermore, we found that CXCR4 is required for HER2-induced invasion, migration, and adhesion activities in vitro . Finally we established stable transfectants using retroviral RNA interference to inhibit CXCR4 expression and showed that the CXCR4 is required for HER2-mediated lung metastasis in vivo. These results provide a plausible mechanism for HER2-mediated breast tumor metastasis and homing to metastatic organs, and establish a functional link between the receptor tyrosine kinase HER2 and the chemokine receptor CXCR4 signaling pathways. ^ The HER2 overexpression activates PI-3K/Akt pathways and plays an important role in mediating cell survival and tumor development. Hypoxia inducible factors (HIF) are the key regulator for angiogenesis and energy metabolism, and thereby enhance tumor growth and metastasis. HIF activation occurs in the majority of human cancers, including the HER2 overexpressing cancer cells. Previous reports suggested that increased PI-3K/Akt may activate HIF pathway in various tumors, but the detail mechanism is still not completely understood. Here we found that HER2/PI-3K/Akt pathway induces HIF-1α activation, which is independent of hypoxia, but relatively weaker than hypoxic stimulation. This phenomenon was further observed in Akt knock out mouse embryonic fibroblast cells. The PI-3K/Akt pathway does not affect HIF-1α binding with its E3 ligase VHL, but enhances the binding affinity between HIF-1α and β unit. Furthermore, we found Akt phosphorylates HIF-1β at serine 271 and further regulated HIF transcriptional activity. Our findings provided one mechanism that HER2 induce HIF activation via Akt to promote angiogenesis, and this process is independent on hypoxia, which may have implications in the oncogenic activity of HER2 and PI-3K/Akt pathway. ^