991 resultados para Gul’ko Compact
Resumo:
Reprints from the Iowa Official Register, 1951-1952 of The Flag, Lincoln's Gettysburg Address, the Constitution of the State of Iowa, the Declaration of Independence, the "Mayflower" Compact and the Constitution of the United States.
Resumo:
A frequency-dependent compact model for inductors in high ohmic substrates, which is based on an energy point-of-view, is developed. This approach enables the description of the most important coupling phenomena that take place inside the device. Magnetically induced losses are quite accurately calculated and coupling between electric and magnetic fields is given by means of a delay constant. The later coupling phenomenon provides a modified procedure for the computation of the fringing capacitance value, when the self-resonance frequency of the inductor is used as a fitting parameter. The model takes into account the width of every metal strip and the pitch between strips. This enables the description of optimized layout inductors. Data from experiments and electromagnetic simulators are presented to test the accuracy of the model.
Resumo:
Whereas numerical modeling using finite-element methods (FEM) can provide transient temperature distribution in the component with enough accuracy, it is of the most importance the development of compact dynamic thermal models that can be used for electrothermal simulation. While in most cases single power sources are considered, here we focus on the simultaneous presence of multiple sources. The thermal model will be in the form of a thermal impedance matrix containing the thermal impedance transfer functions between two arbitrary ports. Eachindividual transfer function element ( ) is obtained from the analysis of the thermal temperature transient at node ¿ ¿ after a power step at node ¿ .¿ Different options for multiexponential transient analysis are detailed and compared. Among the options explored, small thermal models can be obtained by constrained nonlinear least squares (NLSQ) methods if the order is selected properly using validation signals. The methods are applied to the extraction of dynamic compact thermal models for a new ultrathin chip stack technology (UTCS).
Resumo:
We propose a new method of operating laser interferometric gravitational-wave detectors when observing chirps of gravitational radiation from coalescing compact binary stars. This technique consists of the use of narrow-band dual recycling to increase the signal but with the tuning frequency of the detector arranged to follow the frequency of a chirp. We consider the response of such an instrument to chirps, including the effect of inevitable errors in tracking. Different possible tuning strategies are discussed. Both the final signal-to-noise ratio and timing accuracy are evaluated and are shown to be significantly improved by the use of dynamic tuning. This should allow an accurate and reliable measurement of Hubble's constant.
Resumo:
In this paper, we consider active sampling to label pixels grouped with hierarchical clustering. The objective of the method is to match the data relationships discovered by the clustering algorithm with the user's desired class semantics. The first is represented as a complete tree to be pruned and the second is iteratively provided by the user. The active learning algorithm proposed searches the pruning of the tree that best matches the labels of the sampled points. By choosing the part of the tree to sample from according to current pruning's uncertainty, sampling is focused on most uncertain clusters. This way, large clusters for which the class membership is already fixed are no longer queried and sampling is focused on division of clusters showing mixed labels. The model is tested on a VHR image in a multiclass classification setting. The method clearly outperforms random sampling in a transductive setting, but cannot generalize to unseen data, since it aims at optimizing the classification of a given cluster structure.
Resumo:
Thermal energy storage (TES) can increase the thermal energy effieresa, of a process by reusing the waste heat from industrial process, solar energy or other sources. There are different ways to store thermal energy: by sensible heat, by latest heat, by sorption process or by chemical reaction. This thesrs provides a-state-of-the-art review of the experimental performance of TES systems based on solid gas sorption process and chemical reactions. The importance of theses processes is that provides a heat loss free storage system with a high energy density.
Resumo:
Plusieurs familles de fonctions spéciales de plusieurs variables, appelées fonctions d'orbites, sont définies dans le contexte des groupes de Weyl de groupes de Lie simples compacts/d'algèbres de Lie simples. Ces fonctions sont étudiées depuis près d'un siècle en raison de leur lien avec les caractères des représentations irréductibles des algèbres de Lie simples, mais également de par leurs symétries et orthogonalités. Nous sommes principalement intéressés par la description des relations d'orthogonalité discrète et des transformations discrètes correspondantes, transformations qui permettent l'utilisation des fonctions d'orbites dans le traitement de données multidimensionnelles. Cette description est donnée pour les groupes de Weyl dont les racines ont deux longueurs différentes, en particulier pour les groupes de rang $2$ dans le cas des fonctions d'orbites du type $E$ et pour les groupes de rang $3$ dans le cas de toutes les autres fonctions d'orbites.
Resumo:
The arrow shaped microstrip antenna, which produces dual frequency dual polarisation operation with considera-ble size reduction compared to conventional patches has been reported [I]. These antennas provide greater area reduction and improved gain compared to drum shaped patches [2]. Prediction of the resonance frequency of drum shaped patches [3] and circular patches for broadband operation [4] are available in the literature. In this Letter, we propose empirical formulas for calculating the resonance frequencies of the arrow shaped microstrip antenna. These antennas can be employed for obtaining dual frequency with the same polarisation, bandwidth enhancement, circular polarisation etc. by varying its different parameters or by introducing slots. The proposed design equations provide an easier and simple way of predicting the resonant frequencies of these patches.
Resumo:
A new microstrip antenna geometry with considerable reduction in size, with similar radiation characteristics to those of an equivalent rectangular patch antenna is proposed. A relationship has been suggested for fmding out the resonant frequency of the new geometry, and its validity has been established by the experimental results. Without increasing the aperture area, this geometry also offers a facility for considerably reducing the resonant frequency compared to conventional patches.
Resumo:
A simple technique for calculating the resonance frequencies of a compact arrow-shaped microstrip antenna is presented and discussed . The accuracy of the method is validated by experimental results
Resumo:
A novel compact wideband antenna for wireless local area network (WLAN) applications in the 2.4 GHz band are presented. The proposed low profile antenna of dimensions 15 x 14.5 x 1.6 mm offers 18.6% bandwidth and an average gain of~5 dBi. The antenna can be excited directly using a 50 coaxial probe
Resumo:
A compact single –feed multiband planar antenna configuration Suitable for GPS, DCS. 2.4/5.8 GHz WLAN applications are presented. The antenna has dimensions 38 x 3 x 1.6 mm and offers good radiation and reflection characteristics in the above frequency bands. The antenna has a simple geometry and can be easily fed using a 50 coaxial probe
Resumo:
The design and implementation of a novel asymmetric coplanar waveguide (ACPW ) band rejection filter using defected ground structure ( DGS) is presented . The proposed ACPW DGS technology provides band gap characteristics with only one cell in the lateral ground plane . The equivalent circuit model of the proposed DGS unit section is described . Measurements of ACPW DGS showed good agreement with simulation and the proposed model
Resumo:
A new compact micro strip antenna element is analyzed. The analysis can accurately predict the resonant frequency, input impedance, and radiation patterns. The predicted results are compared with experimental results and excellent agreement is observed . These antenna elements are more suitable in applications where limited antenna real estate is available