961 resultados para Growth-rate
Resumo:
The marine oligotrophic ultramicrobacterium Sphingomonas alaskensis RB2256 has a physiology that is distinctly different from that of typical copiotrophic marine bacteria, such as Vibrio angustum S14. This includes a high level of inherent stress resistance and the absence of starvation-induced stress resistance to hydrogen peroxide. In addition to periods of starvation in the ocean, slow nutrient-limited growth is likely to be encountered by oligotrophic bacteria for substantial periods of time. In this study we examined the effects of growth rate on the resistance of S. alaskensis RB2256 to hydrogen peroxide under carbon or nitrogen limitation conditions in nutrient-limited chemostats. Glucose-limited cultures of S. alaskensis RB2256 at a specific growth rate of 0.02 to 0.13 h(-1) exhibited 10,000-fold-greater viability following 60 min of exposure to 25 mM hydrogen peroxide than tells growing at a rate of 0.14 h(-1) or higher. Growth rate control of stress resistance was found to be specific to carbon and energy limitation in this organism. In contrast, V. angustum S14 did not exhibit growth rate-dependent stress resistance. The dramatic switch in stress resistance that was observed under carbon and energy limitation conditions has not been described previously in bacteria and thus may be a characteristic of the oligotrophic ultramicrobacterium, Catalase activity varied marginally and did not correlate with the growth rate, indicating that hydrogen peroxide breakdown was not the primary mechanism of resistance. More than 1,000 spots were resolved on silver-stained protein gels for cultures growing at rates of 0.026, 0.076, and 0.18 h(-1). Twelve protein spots had intensities that varied by more than twofold between growth rates and hence are likely to be important for growth rate-dependent stress resistance. These studies demonstrated the crucial role that nutrient limitation plays in the physiology of S. alaskensis RB2256, especially under oxidative stress conditions.
Resumo:
Degradation experiments of benzoate by Pseudomonas putida resulted in enzymatic carbon isotope fractionations. However, isotopic temperature effects between experiments at 20 and 30 °C were minor. Averages of the last three values of the CO2 isotopic composition (δ13CCO2(g)) were more negative than the initial benzoate δ13C value (−26.2‰ Vienna Pee Dee Belenite (VPDB)) by 3.8, 3.4 and 3.2‰ at 20, 25 and 30 °C, respectively. Although the maximum isotopic temperature difference found was only 0.6‰, more extreme temperature variations may cause larger isotope effects. In order to understand the isotope effects on the total inorganic carbon (TIC), a better measure is to calculate the proportions of the inorganic carbon species (CO2(g), CO2(aq) and HCO3−) and to determine their cumulative δ13CTIC. In all three experiments δ13CTIC was more positive than the initial isotopic composition of the benzoate at a pH of 7. This suggests an uptake of 12C in the biomass in order to match the carbon balance of these closed system experiments.
Resumo:
Limpets, predominantly Patella vulgata, have been associated with damaged or receding canopies of Ascophyllum nodosum. Although damage results from limpet grazing, the benefits that limpets gain from this behaviour are unclear as A. nodosum is thought to be well defended from grazers by anti-herbivore compounds. In the present study, R vulgata individuals were enclosed at densities between 80 and 320 m(-2) at 2 sites within Strangford Lough, Northern Island. Limpet growth and limpet survival were compared between unsubsidised controls and treatments in which limpet diets were subsidised by fronds of A. nodosum. When subsidised, limpet residual growth rates were significantly higher and mortality was lower than in unsubsidised control treatments. Individual limpets consumed a similar amount of A. nodosum regardless of limpet density. Higher densities of limpets, therefore, consumed more A. nodosum per replicate. The effects of A. nodosum in maintaining limpet densities could resonate through sheltered rocky communities. The importance of a macroalgal subsidy in supporting limpet populations may have been underestimated or overlooked in earlier studies. Therefore, the extensive and productive macroalgal canopies that characterise many sheltered temperate rocky shores could be more sensitive to increased limpet abundances than previously thought.
Resumo:
The kelp Laminaria hyperborea is a dominant component of the subtidal nearshore ecosystem and is subjected to a heterogeneous wave and current climate. Water motion is known to influence physiological processes in macroalgae such as photosynthesis and nutrient uptake attributed to mass-transfer limitation. The study attempts to establish the effect of water motion on the growth rates of blades and elongation rates of the stipes of L. hyperborea at adjacent wave-exposed and wave-sheltered locations over a 12month period from field observations. The observations were supported by detailed physical and chemical measurements (light, temperature, seawater nutrient concentrations and hydrodynamics) and of tissue carbon and nitrogen concentrations together with δ13carbon. Despite a 30% difference in the root mean square of the velocity (Velrms) between the two survey locations, there was no evidence to suggest that water motion had any direct influence on the growth rates of either the blades or elongation of stipes of L. hyperborea. No significant differences were observed between either environmental or plant physiological variables between the sheltered and exposed locations. Using an integral velocity parameter (Velrms) the present study also highlighted the importance of the tidally induced current component of water flow in the subtidal zone.
Resumo:
The shallow water kelp Laminaria digitata, abundant in coastal zones of the North Atlantic, is exposed to a range of hydrodynamic environments that makes it ideal for assessing the role of water motion on their growth rate. Here we quantify the growth of L. digitata, as a factor of blade and stipe elongation, at sites adjacent to Strangford Lough, Northern Ireland under different hydrodynamic conditions over a one year period. A modelling approach was used to numerically determine both the temporal and spatial variability of the hydrodynamic environment. Ambient seawater nutrient concentrations, temperature and irradiance were measured as well as the internal nutrient status of the L. digitata populations. Kelp populations growing in the greatest and lowest water motion showed the lowest growth rates. Differences observed in growth rate could not be attributed to seawater nutrient availability, temperature or light. The internal nutrient status also suggested no influence on the observed differences in growth rate. Therefore if there are minimal differences in light, temperature and nutrients between sites, then populations of L. digitata exposed to different water motions are likely to exhibit different growth rates. It is suggested that the growth rate differences observed were a function of water motion with the possibility that, in response to the hydrodynamic forces experienced by the algal cells, L. digitata kelps in the high energy environments were putting more energy into strengthening cell walls rather than blade elongation
Change in individual growth rate and its link to gill-net fishing in two sympatric whitefish species
Resumo:
Size-selective fishing is expected to affect traits such as individual growth rate, but the relationship between the fishery-linked selection differentials and the corresponding phenotypic changes is not well understood. We analysed a 25-year monitoring survey of sympatric populations of the two Alpine whitefish Coregonus albellus and C. fatioi. We determined the fishing-induced selection differentials on growth rates, the actual change of growth rates over time, and potential indicators of reproductive strategies that may change over time. We found marked declines in adult growth rate and significant selection differentials that may partly explain the observed declines. However, when comparing the two sympatric species, the selection differentials on adult growth were stronger in C. albellus while the decline in adult growth rate seemed more pronounced in C. fatioi. Moreover, the selection differential on juvenile growth was significant in C. albellus but not in C. fatioi, while a significant reduction in juvenile growth over the last 25 years was only found in C. fatioi. Our results suggest that size-selective fishing affects the genetics for individual growth in these whitefish, and that the link between selection differentials and phenotypic changes is influenced by species-specific factors.