918 resultados para Ground granulated blast-furnace slag


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphorus removal by wetlands and basins in Lake Tahoe may be improved through designing these systems to filter storm water through media having higher phosphorus removal capabilities than local parent material. Substrates rich in iron, aluminum and calcium oftentimes have enhanced phosphorus removal. These substrates can be naturally occurring, byproducts of industrial or water treatment processes, or engineered. Phosphorus removal fundamentally occurs through chemical adsorption and/or precipitation and much of the phosphorus can be irreversibly bound. In addition to these standard media, other engineered substrates are available to enhance P removal. One such substrate is locally available in Reno and uses lanthanum coated diatomaceous earth for arsenate removal. This material, which has a high positive surface charge, can also irreversibly remove phosphorus. Physical factors also affect P removal. Specifically, specific surface area and particle shape affect filtration capacity, contact area between water and the surface area, and likelihood of clogging and blinding. A number of substrates have been shown to effectively remove P in case studies. Based upon these studies, promising substrates include WTRs, blast furnace slag, steel furnace slag, OPC, calcite, marble Utelite and other LWAs, zeolite and shale. However, other nonperformance factors such as environmental considerations, application logistics, costs, and potential for cementification narrow the list of possible media for application at Tahoe. Industrial byproducts such as slags risk possible leaching of heavy metals and this potential cannot be easily predicted. Fly ash and other fine particle substrates would be more difficult to apply because they would need to be blended, making them less desirable and more costly to apply than larger diameter media. High transportation costs rule out non-local products. Finally, amorphous calcium products will eventually cementify reducing their effectiveness in filtration systems. Based upon these considerations, bauxite, LWAs and expanded shales/clays, iron-rich sands, activated alumina, marble and dolomite, and natural and lanthanum activated diatomaceous earth are the products most likely to be tested for application at Tahoe. These materials are typically iron, calcium or aluminum based; many have a high specific surface area; and all have low transportation costs. (PDF contains 21 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Implementation of both design for durability and performance-based standards and specifications are limited by the lack of rapid, simple, science-based test methods for characterizing the transport properties and deterioration resistance of concrete. To this end, this paper presents the background rationale and current developments in the application of electrical property measurements - conductivity in this instance - as a testing methodology to evaluate the relative performance of a range of concrete mixes. The technique can not only be used on standard specimens (e.g. cubes), but also lends itself to in-situ monitoring thereby allowing measurements to be obtained on the as-placed concrete. It is the latter which forms the focus of the current work. Conductivity measurements are presented for concretes with and without supplementary cementitious materials (SCM's) from demoulding up to 400-days. It is shown that electrical conductivity measurements display a continual decrease over the entire test period and attributed to the pore structure refinement due to hydration and pozzolanic reaction in those concretes containing blast furnace slag or fly ash. The term Formation Factor is introduced to rank concrete performance in terms of is resistance to chloride penetration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of an experimental study of resistance-curve behavior and fatigue crack growth in cementitious matrices reinforced with eco-friendly natural fibers obtained from agricultural by-products. The composites include: blast furnace slag cement reinforced with pulped fibers of sisal, banana and bleached eucalyptus pulp, and ordinary Portland cement composites reinforced with bleached eucalyptus pulp. Fracture resistance (R-curve) and fatigue crack growth behavior were studied using single-edge notched bend specimens. The observed stable crack growth behavior was then related to crack/microstructure interactions that were elucidated via scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Fracture mechanics models were used to quantify the observed crack-tip shielding due to crack-bridging. The implications of the results are also discussed for the design of natural fiber-reinforced composite materials for affordable housing. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resíduos industriais são fontes alternativas de nutrientes para as plantas e sua utilização decorre da necessidade de diminuir o acúmulo dos resíduos nos centros de produção. O objetivo deste trabalho foi avaliar o efeito de escórias de siderurgia nos atributos químicos do solo, no desenvolvimento e na produtividade de grãos do arroz de terras altas irrigado por aspersão. O delineamento experimental foi em blocos casualizados, com três tratamentos constituídos de duas escórias, alto-forno (196 g kg-1 de Si) e aciaria (56 g kg-1 de Si), e a testemunha sem aplicação, com oito repetições. As escórias podem ser usadas como corretivo de acidez do solo e como fonte de silício. As alterações nos atributos químicos do solo estão relacionadas com a composição química das escórias. A escória de alto-forno proporcionou maior crescimento radicular em profundidade e melhor distribuição no perfil do solo e, conseqüentemente, maior produção de massa de matéria seca da parte aérea e produtividade de grãos de arroz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A utilização agrícola de resíduos industriais como fertilizantes decorre da necessidade de diminuir o efeito nocivo do acúmulo de nutrientes nos centros de produção. O objetivo deste trabalho foi avaliar os efeitos de escória de alto forno no crescimento radicular e na produtividade do arroz de terras altas irrigado por aspersão. O experimento foi realizado no campo, adotando-se o delineamento experimental de blocos casualizados, com cinco doses de escória de alto forno (0, 2.550, 5.100, 10.200 e 15.300 kg ha-1) com quatro repetições. A utilização de escória melhorou a condição química do solo, aumentou o crescimento e a superfície radicular, diminuiu o diâmetro das raízes e elevou os teores de silício no solo e na planta, resultando em aumento da produtividade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the no till system, soil acidity correction practice is restricted to limestone use and there is little information regarding slag. The study aimed to evaluate the amendments in soil chemical properties, yield and bean nutrient uptake according to the application forms of slags, compared to limestone, in the implantation of no till system. The experiment was conducted in the field at College of Agricultural Sciences, Botucatu (SP) from December 2010 to May2011. The treatments consisted of two application ways of seven soil acidity correctives: steel slag, blast furnace slag, ladle furnace slag, stainless steel slag (agrosilício), wollastonite, lime and calcined dolomite lime, plus one control without corrective application. Each material dose was calculated to raise the base saturation to 70%. Soil acidity was neutralized down to 20cm with limestones, whereas for wollastonite and ladle furnace slag those effects occurred down to 10cm, for steel slag, blast furnace slag and agrosilício the corrective effect was restricted to the first 5cm. The bean yield increased by application of correctives in soil acidity, without differences between the application ways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrotalcite like compounds (HT) were prepared by co-precipitation (Mg/Al = 3.5), using an acid solution with blast furnace slag and MgCl2.6H2O and aqueous solutions of NaOH. The following synthesis variables were investigated: temperature (30 and 45 ºC) and pH (9 and 12). Depending of the temperature two systems were observed: Mg-Al-CO3 (T = 30 ºC); Mg-Al-Cl-CO3 (T = 45 ºC). An increase in the pH of synthesis and Mg2+ concentration produced HTs well-crystallized and with greater values of all cell parameters. The study showed the potentiality of BFS in the synthesis of well-crystallized LDHs without the presence of other crystalline phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Agricultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Civil - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microporous material Ionsiv is used for 137Cs removal from aqueous nuclear waste streams. In the UK, Cs-loaded Ionsiv is classed as an intermediate-level waste; no sentencing and disposal route is yet defined for this material and it is currently held in safe interim storage on several nuclear sites. In this study, the suitability of fly ash and blast furnace slag blended cements for encapsulation of Cs-Ionsiv in a monolithic wasteform was investigated. No evidence of reaction or dissolution of the Cs-Ionsiv in the cementitious environment was found by scanning electron microscopy and X-ray diffraction. However, a small fraction (<= 1.6 wt.%) of the Cs inventory was released from the encapsulated Ionsiv during leaching experiments carried out on hydrated samples. Furthermore, it was evident that K and Na present in the cementitious pore water exchanged with Cs and H in the Ionsiv. Therefore, cement systems lower in K and Na, such as slag based cements, showed lower Cs release than the fly ash based cements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work studies the resistant of the concrete against magnesium sulfate (MgSO4) and compare the results with values obtained previously of the same concretes exposed to sodium sulfate (Na2SO4). Thus, it is possible analyze the influence of the cation type. To that end, four different concrete mixes were made with sulfur resistant cement and mineral admixtures (silica fume, fly ash and blast furnace slag). The concretes were submerged for different period in magnesium sulfate (MgSO4). After that, different tests were carried out to define mechanical and microstructural properties. The results obtained were compared with reference values of concretes cured in calcium hydroxide [Ca(OH)2]. According to the results, the concrete with blast furnace slag presented the best behavior front MgSO4, meanwhile the concretes with silica fume and fly ash were the most susceptible. The resistance of the concrete with blast furnace slag could be attributed to the characteristics of the hydrated silicates formed during the hydration time, which include aluminum in the chemical chain that hinder its chemical decomposition during the attack of magnesium. The magnesium sulfate solution was most aggressive than sodium sulfate solution. El presente trabajo estudia la resistencia de hormigones al ataque de sulfatos provenientes de sulfato magnésico (MgSO4) y compara estos valores con resultados previos de los mismos hormigones atacados con sulfato sódico (Na2SO4). De esta manera se estudia la interacción del catión que acompaña al ion sulfato durante su afectación a la matriz cementicia. Para lo anterior, se diseñaron cuatro dosificaciones empleando cementos sulforresistentes y adiciones minerales (humo de sílice, ceniza volante y escoria de alto horno). Los hormigones se sumergieron, por distintos periodos de tiempo, en disolución de sulfato magnésico (MgSO4) de concentración 1M, para después realizarles ensayos mecánicos y a nivel microestructural. Los valores obtenidos se compararon con los obtenidos en el hormigón de referencia curado en hidróxido cálcico. El hormigón con escoria de alto horno presentó el mejor comportamiento frente a MgSO4, siendo las mezclas de humo de sílice y ceniza volante las más susceptibles. La resistencia del hormigón con escoria se atribuye a las características de los silicatos hidratados formados durante la hidratación, los cuales incorporan aluminio en las cadenas impidiendo su descomposición ante un ataque por magnesio. El medio con sulfato magnésico mostro una mayor agresividad que el medio con sulfato sódico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been analyzed samples of portland cement (PC) with and without admixtures, samples of calcium aluminate cement (CAC) with different content of Al2O3 and specimens of concrete made with PC and CAC using High Resolution Gamma Spectrometry. The activity concentration index (I) is much less than 0.5 mSv y-1 for all the concrete specimens according to the Radiation protection document 112 of the European Commission. The PC without admixtures (CEM I 52,5 R) and the PC with addition of limestone (CEM II/BL 32,5 N) also have an I value much lower than 0.5 and the PC with the addition of fly ash and blast furnace slag (CEM IV/B (V) 32,5 N and III/A 42.5 N/SR) have an I value close to 0.6. The I value of the CAC used in the manufacture of structural precast concrete is of the order of 1 mSv y-1. Some of the CAC used in refractory concrete reaches a value close to 2 mSv y-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Widespread use of glass fibre reinforced cement (GRC) has been impeded by concerns over its durability. Three degradation mechanisms are proposed - fibre corrosion, Ca(OHh precipitation and matrix densification - although their relative importance is debated. Matrices with reduced alkalinities and Ca(OH)2 contents are being developed; the aim of this study was to investigate their hydration and interaction with alkali-resistant fibres to determine the factors controlling their long-term durability, and assess the relevancy of accelerated ageing. The matrices studied were: OPC/calcium-sulphoaluminate cement plus metakaolin (C); OPC plus metakaolin (M); blast-furnace slag cement plus a micro-silica based additive (D); and OPC (O). Accelerated ageing included hot water and cyclic regimes prior to tensile testing. Investigations included pore solution expression, XRD, DTA/TG, SEM and optical petrography. Bond strength was determined from crack spacings using microstructural parameters obtained from a unique image analysis technique. It was found that, for the new matrices - pore solution alkalinities were lower; Ca(OH)2 was absent or quickly consumed; different hydrates were formed at higher immersion temperatures; degradation under 65°C immersion was an order of magnitude slower, and no interfilamental Ca(OH)2 was observed .It was concluded that: fibre weakening caused by flaw growth was the primary degradation mechanism and was successfully modelled on stress corrosion/static fatigue principles. OPC inferiority was attributed partly to its higher alkalinity but chiefly to the growth of Ca(OH)2 aggravating the degradation; and hot water ageing although useful in model formulation and contrasting the matrices, changed the intrinsic nature of the composites rather than simply accelerating the degradation mechanisms.