996 resultados para Green house automation
Resumo:
Negative effects of soil compaction have been recognized as one of the problems restricting the root system and consequently impairing yields, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in green house studies are necessary for the development of mechanism which alleviates soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. The experiment was conducted to assess the root length density and root diameter of the corn (Zea mays L.) crop as a function of bulk density and water stress, characterized by the soil density (1.2; 1.4, and 1.6 g cm -3), and two levels of the water content, approximately (70 and 90% field capacity). The statistical design adopted was completely randomized design, with four replicates in a factorial pattern of (3 × 2). The PVC tubes were superimposed with an internal diameter of 20 cm with a height of 40 cm (the upper tube 20 cm, compacted and inferior tube 10 cm), the hardpan with different levels of soil compaction were located between 20 and 30 cm of the depth of the pot. Results showed that: the main effects of subsoil mechanical impedance were observed on the top layer indicating that the plants had to penetrate beyond the favorable soil conditions before root growth was affected from 3.16; 2.41 to 1.37 cm cm -3 (P<0.005). There was a significant difference at the hardpan layer for the two levels of water and 90% field capacity reduced the root growth from 0.91 to 0.60 cm cm -3 (P<0.005). The root length density and root diameter were affected by increasing soil bulk density from 1.2 to 1.6 g cm -3 which caused penetration resistance to increase to 1.4 MPa. Soil water content of 70% field capacity furnished better root growth in all the layers studied. The increase in root length density resulted in increased root volume. It can also be concluded that the effect of soil compaction impaired the root diameter mostly at the hardpan layer. Soil temperature had detrimental effect on the root growth mostly with higher bulk densities.
Resumo:
The chemical and physical degradation of the soils by salinity and sodicity problems constitutes a serious obstacle in productive irrigated areas in arid and semi-add regions. In order to eval mate the effect of gypsum on electrical conductivity, pH, exchangeable sodium percentage, sodium, calcium and magnesium content in saturation extract and exchangeable sodium of two saline-sodic soils: one from irrigated Perimeter Engenheiro Arco Verde in the municipality of Condado and another from irrigated Perimeter of São Gonçalo, in the municipality of Sousa both in the Paraiba State Brazil, an experiment was carried out in green house of the Departamento de Solos e Engenharia Rural, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil, in a factorial design 2 × 5 referring the two soils and five gypsum levels equivalent to 0; 3.2; 6.3; 9.4 and 12.5 g kg-1 to each soil. The gypsum application exercised positive effects on reduction of salinity and sodicity. The values of electrical conductivity, exchangeable sodium percentage, pH and contents of soluble and exchangeable sodium in relation to data of the soils before application of treatments with gypsum in both the soils were found to decrease.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work aimed to evaluate the effect of cattle manure levels in the phase of implementation Corymbia citriodora (Hook.) K. D. Hill & L. A. S. Johnson (Eucalyptus citriodora) seedlings in field, produced from seeds collected from four mother trees. The experiment was carried out in green house, in pots filled with 5 dm 3 of Oxisol. Five cattle manure levels were applied 0, 10, 20, 30, and 40 t ha -1 (0, 25, 50, 75, and 100 g pot -1). All treatments received lime levels which were calculated to increase the base saturation degree to 50%. The soil fertility was evaluated after 30 days of soil incubation with manure and lime. The seeds were collected from mother trees called 2, 8, 20 and 29. Sowing was performed directly in rigid plastic containers of 50 cm 3 and seedlings were transplanted when they were around 17 cm height. The experimental design was entirely randomized, in a factorial 5 × 4 (five doses of cattle manure and seeds of four mother trees) scheme and four repetitions. Each parcel was a pot with two plants. At 90 days the height, foliar area, stalk diameter, shoot and root dry matter. The plants responded positively to application of manure, but differently for each evaluated growth characteristic linearly or quadratically. The manure levels had linear effects on growth characteristics and dry matter production of the plants from mother trees 2 and 20 moreover these plants require more cattle manure levels than ones from mother trees 8 and 29. The cattle manure promoted the best development of plants from mother trees 8 and 29, in relationship with dry matter production of shoot components was approximately 27 t ha-1, equivalent to 67.5 g pot.
Resumo:
At this time, each major automotive market bares its own standards and test procedures to regulate the vehicle green house gases emissions and, thus, fuel consumption. Hence, much are the ways to evaluate the overall efficiency of motor vehicles. The majority of such standards rely on dynamometer cycle tests that appraise only the vehicle as a whole, but fail to assess emissions for each component or sub-system. Once the amount of work generated by the power source of an ICE vehicle to overcome the driving resistance forces is proportional to the energy contained in the required amount of fuel, the power path of the vehicle can be straightforwardly modeled as a set of mechanical systems, and each sub-system evaluated for its share on the total fuel consumption and green house gases emission. This procedure enables the estimation of efficiency gains on the system due to improvement of particular elements on the vehicle's driveline. In this work a simple systematic mechanical model of an arbitrary smallsized hatch back was assembled and total required energy calculated for different regulatory cycles. All the modeling details of the energy balance throughout the system are presented. Afterward, each subsystem was investigated for its role on the fuel consumption and the generated emission quantified. Furthermore, the application of the modeling technique for different sets of sub-systems was introduced. Copyright © 2011 SAE International.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Crescimento, alocação de recursos e requerimento de nutrientes em Heteranthera reniformis Ruiz e Pav
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)