983 resultados para Gray, Horace, 1828-1902.
Resumo:
We describe Riama crypta, new species, from the western slopes of the Cordillera Occidental, Ecuador. This taxon was formerly referred to as Riama hyposticta, a rare species described on the basis of an adult male from northern Ecuador and here recorded from southwestern Colombia. The new species differs principally from Riama hyposticta by an incomplete superciliary series, formed just by the anteriormost superciliary scale (superciliary series complete in R. hyposticta, formed by five or six scales), no nasoloreal suture [= loreal absent] (complete (= loreal present] in R. hyposticta), distinct dorsolateral stripes at least anteriorly (scattered brown spots dorsally without dorsolateral stripes in R. hyposticta), and ventral coloration composed of small cream or brown spots or longitudinal stripes (dark brown with conspicuous transverse white bars and spots). Additionally, we document the presence of distal filiform appendages on the hemipenial lobes of both species.
Resumo:
Rationale Serotonin in the dorsal periaqueductal gray (DPAG) through the activation of 5-HT(1A) and 5-HT(2A) receptors inhibits escape, a defensive behavior associated with panic attacks. Long-term treatment with antipanic drugs that nonselectively or selectively blocks the reuptake of serotonin (e.g., imipramine and fluoxetine, respectively) enhances the inhibitory effect on escape caused by intra-DPAG injection of 5-HT(1A) and 5-HT(2A) receptor agonists. It has been proposed that these compounds exert their effect on panic by facilitating 5-HT-mediated neurotransmission in the DPAG. Objectives The objective of this study was to investigate whether facilitation of 5-HT neurotransmission in the DPAG is also observed after treatment with alprazolam, a pharmacologically distinct antipanic drug that acts primarily as a high potency benzodiazepine receptor agonist. Materials and methods Male Wistar rats, subchronically (3-6 days) or chronically (14-17 days) treated with alprazolam (2 and 4 mg/kg, i.p.) were intra-DPAG injected with (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT), (+/-)-1-(2,5-dimethoxy-4-iodophenyl) piperazine dihydrochloride (DOI), and midazolam, respectively, 5-HT(1A), 5-HT(2A/2C), and benzodiazepine receptor agonists. The intensity of electrical current that needed to be applied to the DPAG to evoke escape behavior was measured before and after the microinjection of these agonists. Results Intra-DPAG injection of the 5-HT agonists and midazolam increased the escape threshold in all groups of animals tested, indicating a panicolytic-like effect. The inhibitory effect of 8-OH-DPAT and DOI, but not midazolam, was significantly higher in animals receiving long-, but not short-term treatment with alprazolam. Conclusions Alprazolam as antidepressants compounds facilitates 5-HT(1A)- and 5-HT(2A)-receptor-mediated neurotransmission in the DPAG, implicating this effect in the mode of action of different classes of antipanic drugs.
Resumo:
This paper describes the ocular morphology of young adults of the southern hemisphere lamprey Geotria australis, the sole representative of the Geotriidae, and makes comparisons with those of holarctic lampreys (Petromyzontidae). As previously reported for the holarctic lamprey Ichthyomyzon unicuspis [Collin and Fritzsch, 1993], the lens of G. australis is non-spherical and possesses a cone-shaped posterior that may be capable of mediating variable focus. The avascular retina of G. australis is well differentiated, containing three retinal ganglion cell populations, three layers of horizontal cells and three photoreceptor types, in contrast to petromyzontids that contain only two photoreceptor types (short and long), G. australis possesses one rod-like (R1) and two cone-like (C1 and C2) photoreceptors. Although the rodlike receptor in G. australis may be homologous with the short receptors of holarctic lampreys, the two cone-like receptors have morphological characteristics that differ markedly from those of the long receptors of their holarctic counterparts. The features which distinguish the two cone-like receptors from those of the long receptor type in holarctic lampreys are the characteristics of the mitochondria and the presence of large amounts of two different types of stored secretory material in the endoplasmic reticulum of the myoid (refractile bodies). The endoplasmic reticulum of each receptor type has a different shape and staining profile and is polymorphic, each showing a continuum of distension. It is proposed that the presence of two cone-like photoreceptors with different characteristics would increase the spectral range of G. australis and thus be of value during the parasitic phase, when this lamprey lives in the surface marine waters. The irideal flap, present in G. australis but not petromyzontids, would assist in reducing intraocular flare during life in surface waters. The results of this study, which are discussed in the context of the proposed evolution of lampreys, emphasise that it is important to take into account the characteristics of the eyes of southern hemisphere lampreys when making generalizations about the eyes of lampreys as a whole.
Resumo:
The dorsal (dPAG) and ventral (vPAG) regions of the periaqueductal gray are well known to contain the neural substrates of fear and anxiety. Chemical or electrical stimulation of the dPAG induces freezing, followed by a robust behavioral reaction that has been considered an animal model of panic attack. In contrast, the vPAG is part of a neural system, in which immobility is the usual response to its stimulation. The defense reaction induced by the stimulation of either region is accompanied by anti nociception. Although GABAergic mechanisms are known to exert tonic inhibitory control on the neural substrates of fear in the dPAG, the role of these mechanisms in the vPAG is still unclear. The present study examined defensive behaviors and antinociception induced by microinjections of an inhibitor of gamma-aminobutyric acid synthesis, L-allylglycine (L-AG; 1, 3, and 5 mu g/0.2 mu l), into either the dPAG or vPAG of rats subjected to the open field and tail-flick tests. Passive or tense immobility was the predominant behavior after L-AG (1 or 3 mu g) microinjection into the vPAG and dPAG, respectively, which was replaced with intense hyperactivity, including jumps or rearings, after injections of a higher dose (5 mu g/0.2 mu l) into the dPAG or vPAG. Moreover, whereas intra-dPAG injection of 3 mu g L-AG produced intense antinociception, only weak antinociception was induced by intra-vPAG injections of 5 mu g L-AG. These findings suggest that GABA mechanisms are involved in the mediation of antinociception and behavioral inhibition to aversive stimulation of the vPAG and exert powerful control over the neural substrates of fear in the dPAG to prevent a full-blown defense reaction possibly associated with panic disorder. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Serotonin (5-HT) plays a key role in the neural circuitry mediating unconditioned and conditioned fear responses related to panic and generalized anxiety disorders. The basolateral nucleus of the amygdala (BLA) and the dorsal periaqueductal gray (dPAG) appear to be mainly involved in these conditions. The aim of this study was to measure the extracellular level of 5-HT and its metabolite 5-hydroxyindolacetic acid (5-HIAA) in the BLA and dPAG during unconditioned and conditioned fear states using in vivo microdialysis procedure. Thus, for the unconditioned fear test, animals were chemically stimulated in the dPAG with semicarbazide, an inhibitor of the gamma-aminobutyric acid-synthesizing enzyme glutamic acid decarboxylase. For the conditioned fear test, animals were subjected to a contextual conditioned fear paradigm using electrical footshock as the unconditioned stimulus. The results show that the 5-HT and 5-HIAA level in the BLA and dPAG did not change during unconditioned fear, whereas 5-HT concentration, but not 5-HIAA concentration, increased in these brain areas during conditioned fear. The present study showed that the 5-HT system was activated during conditioned fear, whereas it remained unchanged during unconditioned fear, supporting the hypothesis that 5-HT has distinct roles in conditioned and unconditioned fear (dual role of 5-HT in anxiety disorders). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The inferior colliculus (IC) together with the dorsal periaqueductal gray (dPAG), the amygdala and the medial hypothalamus make part of the brain aversion system, which has mainly been related to the organization of unconditioned fear. However, the involvement of the IC and dPAG in the conditioned fear is still unclear. It is certain that GABA has a regulatory role on the aversive states generated and elaborated in these midbrain structures. In this study, we evaluated the effects of injections of the GABA-A receptor agonist muscimol (1.0 and 2.0 nmol/0.2 mu L) into the IC or dPAG on the freezing and fear-potentiated startle (FPS) responses of rats submitted to a context fear conditioning. Intra-IC injections of muscimol did not cause any significant effect on the FPS or conditioned freezing but enhanced the startle reflex in non-conditioned animals. In contrast, intra-dPAG injections of muscimol caused significant reduction in FPS and conditioned freezing without changing the startle reflex in non-conditioned animals. Thus, intra-dPAG injections of muscimol produced the expected inhibitory effects on the anxiety-related responses, the FPS and the freezing whereas these injections into the IC produced quite opposite effects suggesting that descending inhibitory pathways from the IC, probably mediated by GABA-A mechanisms, exert a regulatory role on the lower brainstem circuits responsible for the startle reflex. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The beta-adrenergic blocker and 5-HT(1A) receptor antagonist pindolol has been combined with selective serotonin reuptake inhibitors (SSRIs) in patients with depressive and anxiety disorders to shorten the onset of the clinical action and/or increase the proportion of responders. The results of a previous study have shown that pindolol potentiates the panicolytic effect of paroxetine in rats submitted to the elevated T-maze (ETM). Since reported evidence has implicated the 5-HT(1A) receptors of the dorsal periaqueductal gray matter (DPAG) in the panicolytic effect of antidepressants, rats treated with pindolol (5.0 mg/kg, i.p.) and paroxetine (1.5 mg/kg, i.p.) received a previous intra-DPAG injection of the selective 5-HT(1A) antagonist, WAY-100635 (0.4 mu g) and were submitted to the ETM. Pretreatment with WAY-100635 reversed the increase in escape latency, a panicolytic effect, determined by the pindolol-paroxetine combination. These results implicate the 5-HT(1A) receptors of the DPAG in the panicolytic effect of the pindolol-paroxetine combination administered systemically. They also give further preclinical support for the use of this drug combination in the treatment of panic disorder. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Studies on the involvement of 5-HT1-mediated mechanisms in the dorsal periaqueductal gray (dPAG) of animals with past stressful experiences have not been conducted so far. We investigated the role of 5-HT1 receptors in the dPAG of rats previously submitted to contextual fear conditioning. Defensive behaviors induced by activation of the dPAG were assessed by measuring the lowest electric current applied to this structure (threshold) able to produce freezing and escape responses during testing sessions of contextual fear conditioning, in which animals were placed in a context previously paired to footshocks. The 5-HT1A function of the dPAG was evaluated by local injections of 8-OH-DPAT (4 and 8 nmol/0.2 mu L) and WAY-100635 (10 nmol/0.2 mu L), selective agonist and antagonist of 5-HT1A receptors, respectively. In accordance with previous studies, 8-OH-DPAT increased aversive thresholds (antiaversive effects) but injections of WAY 100635 into the dPAG did not produce significant effects on the aversive thresholds in naive rats. However, the aversive thresholds of animals exhibiting contextual fear remained unchanged with both treatments. Moreover, 8-OH-DPAT and WAY 100635 did not change the dPAG post-stimulation freezing. The present results suggest that the stressful experience of being fear conditioned has an effect on the role of the 5-HT1A receptors in mediating unconditioned fear. Also, the reduction in the regulation of the defensive behaviors by 5-HT1A-mediated mechanisms in the dPAG of these animals may underlie the stress precipitated psychopathology associated with the neural substrates of aversion of the dPAG. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Previous magnetic resonance imaging (MRI) studies described consistent age-related gray matter (GM) reductions in the fronto-parietal neocortex, insula and cerebellum in elderly subjects, but not as frequently in limbic/paralimbic structures. However, it is unclear whether such features are already present during earlier stages of adulthood, and if age-related GM changes may follow non-linear patterns at such age range. This voxel-based morphometry study investigated the relationship between GM volumes and age specifically during non-elderly life (18-50 years) in 89 healthy individuals (48 males and 41 females). Voxelwise analyses showed significant (p < 0.05, corrected) negative correlations in the right prefrontal cortex and left cerebellum, and positive correlations (indicating lack of GM loss) in the medial temporal region, cingulate gyrus, insula and temporal neocortex. Analyses using ROI masks showed that age-related dorsolateral prefrontal volume decrements followed non-linear patterns, and were less prominent in females compared to males at this age range. These findings further support for the notion of a heterogeneous and asynchronous pattern of age-related brain morphometric changes, with region-specific non-linear features. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Although abnonnalities in brain structures involved in the neurobiology of fear and anxiety have been implicated in the pathophysiology of panic disorder (PD), relatively few studies have made use of voxel-based morphometry (VBM) magnetic resonance imaging (MRI) to determine structural brain abnormalities in PD. We have assessed gray matter volume in 19 PD patients and 20 healthy volunteers using VBM. Images were acquired using a 1.5 T MRI scanner, and were spatially normalized and segmented using optimized VBM. Statistical comparisons were performed using the general linear model. A relative increase in gay matter volume was found in the left insula of PD patients compared with controls. Additional structures showing differential increases were the left superior temporal gyrus, the midbrain, and the pons. A relative gray matter deficit was found in the right anterior cingulate cortex. The insula and anterior cingulate abnormalities may be relevant to the pathophysiology of PD, since these structures participate in the evaluation process that ascribes negative emotional meaning to potentially distressing cognitive and interoceptive sensory information. The abnormal brain stem structures may be involved in the generation of panic attacks. (C) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Impulsivity is a personality trait exhibited by healthy individuals, but excessive impulsivity is associated with some mental disorders. Lesion and functional, neuroimaging Studies indicate that the ventromedial prefrontal region (VMPFC), including the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and medial prefrontal cortex, and the amygdala may modulate impulsivity and aggression. However, no morphometric study has examined the association between VMPFC and impulsivity. We hypothesized that healthy subjects with high impulsivity would have smaller volumes in these brain regions compared with those with low impulsivity. Sixty-two healthy Subjects were Studied (age 35.4 +/- 12.1 years) using a 1.5-T MRI system. The Barratt impulsiveness scale (BIS) was used to assess impulsivity. Images were processed using an optimized voxel-based morphometry (VBM) protocol. We calculated the correlations between BIS scale scores and the gray matter (GM) and white matter (WM) volumes of VMPFC and amygdala. GM volumes of the left and right OFC were inversely correlated with the BIS total score (P = 0.04 and 0.02, respectively). Left ACC GM Volumes had a tendency to be inversely correlated with the BIS total score (P = 0.05. Right OFC GM Volumes were inversely correlated with BIS nonplanning impulsivity, and left OFC GM volumes were inversely correlated with motor impulsivity. There were no significant WM volume correlations with impulsivity. The results Of this morphometry Study indicate that small OFC volume relate to high impulsivity and extend the prior finding that the VMPFC is involved in the circuit modulating impulsivity. HUM Brain Mapp 30:1188-1195, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
Objectives: Functional and postmortem studies suggest that the orbitofrontal cortex (OFC) is involved in the pathophysiology of bipolar disorder (BD). This anatomical magnetic resonance imaging (MRI) study examined whether BD patients have smaller OFC gray matter volumes compared to healthy comparison subjects (HC). Methods: Twenty-eight BD patients were compared to 28 age- and gender-matched HC. Subjects underwent a 1.5T MRI with 3D spoiled gradient recalled acquisition. Total OFC and medial and lateral subdivisions were manually traced by a blinded examiner. Images were segmented and gray matter volumes were calculated using an automated method. Results: Analysis of covariance, with intracranial volume as covariate, showed that BD patients and HC did not differ in gray matter volumes of total OFC or its subdivisions. However, total OFC gray matter volume was significantly smaller in depressed patients (n = 10) compared to euthymic patients (n = 18). Moreover, total OFC gray matter volumes were inversely correlated with depressive symptom intensity, as assessed by the Hamilton Depression Rating Scale. OFC gray matter volumes were not related to lithium treatment, age at disease onset, number of episodes, or family history of mood disorders. Conclusions: Our results suggest that abnormal OFC gray matter volumes are not a pervasive characteristic of BD, but may be associated with specific clinical features of the disorder.