988 resultados para Gravitational field
Resumo:
By exploring the relationship between the propagation of electromagnetic waves in a gravitational field and the light propagation in a refractive medium, it is shown that, in the presence of a positive cosmological constant, the velocity of light will be smaller than its special relativity value. Then, restricting again to the domain of validity of geometrical optics, the same result is obtained in the context of wave optics. It is argued that this phenomenon and the anisotropy in the velocity of light in a gravitational field are produced by the same mechanism.
Resumo:
We study the bending of light caused by a static gravitational field generated by a localized material source in the context of quadratic gravity. Our calculation shows that for light rays passing close to the Sun the deflection Phi lies in the interval 0 <
Resumo:
In the context of the teleparallel equivalent of general relativity, we obtain the tetrad and the torsion fields of the stationary axisymmetric Kerr spacetime. It is shown that, in the slow rotation and weak-field approximations, the axial-vector torsion plays the role of the gravitomagnetic component of the gravitational field, and is thus responsible for the Lense-Thirring effect.
Resumo:
A gravitational field can be seen as the anholonomy of the tetrad fields. This is more explicit in the teleparallel approach, in which the gravitational field-strength is the torsion of the ensuing Weitzenbock connection. In a tetrad frame, that torsion is just the anholonomy of that frame. The infinitely many tetrad fields taking the Lorentz metric into a given Riemannian metric differ by point-dependent Lorentz transformations. Inertial frames constitute a smaller infinity of them, differing by fixed-point Lorentz transformations. Holonomic tetrads take the Lorentz metric into itself, and correspond to Minkowski flat spacetime. An accelerated frame is necessarily anholonomic and sees the electromagnetic field strength with an additional term.
Resumo:
The role played by torsion in gravitation is critically reviewed. After a description of the problems and controversies involving the physics of torsion, a comprehensive presentation of the teleparallel equivalent of general relativity is made. According to this theory, curvature and torsion are alternative ways of describing the gravitational field, and consequently related to the same degrees of freedom of gravity. However, more general gravity theories, like for example Einstein-Cartan and gauge theories for the Poincare and the affine groups, consider curvature and torsion as representing independent degrees of freedom. By using an active version of the strong equivalence principle, a possible solution to this conceptual question is reviewed. This solution ultimately favors the teleparallel point of view, and consequently the completeness of general relativity. A discussion of the consequences for gravitation is presented.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We construct a phenomenological theory of gravitation based on a second order gauge formulation for the Lorentz group. The model presents a long-range modification for the gravitational field leading to a cosmological model provided with an accelerated expansion at recent times. We estimate the model parameters using observational data and verify that our estimative for the age of the Universe is of the same magnitude than the one predicted by the standard model. The transition from the decelerated expansion regime to the accelerated one occurs recently (at similar to 9.3 Gyr).
Resumo:
We consider the scattering of a photon by a weak gravitational field, treated as an external field, up to second order of the perturbation expansion. The resulting cross section is energy dependent which indicates a violation of Galileo's equivalence principle (universality of free fall) and, consequently, of the classical equivalence principle. The deflection angle theta for a photon passing by the sun is evaluated afterward and the likelihood of detecting Delta theta/theta(E) theta-theta(E)/theta(E) (where theta(E) is the value predicted by Einstein's geometrical theory for the light bending) in the foreseeable future, is discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the present work is analyzed the contribution of the Moon on the collisional process of the Earth with asteroids (NEOs). The dynamical system adopted is the restricted four-body problem Sun-Earth-Moon-particle. Using a simple analytical approach one can verify that, the orbit of an object can be significantly affected by the Moon's gravitational field when their relative velocity is smaller than 5 km/s. Therefore, the present work is based on hypothetical asteroids whose velocities relative to Moon are of the order of 1 km/s. In fact, there are several real objects (NEOs) with such velocities at the point they cross the Earth's orbit. The net results obtained indicate that the Moon helps to avoid collisions (2.6%) more than it contributes to extra collisions (0.6%). (C) 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
General relativity and quantum mechanics are not consistent with each other. This conflict stems from the very fundamental principles on which these theories are grounded. General relativity, on one hand, is based on the equivalence principle, whose strong version establishes the local equivalence between gravitation and inertia. Quantum mechanics, on the other hand, is fundamentally based on the uncertainty principle, which is essentially nonlocal. This difference precludes the existence of a quantum version of the strong equivalence principle, and consequently of a quantum version of general relativity. Furthermore, there are compelling experimental evidences that a quantum object in the presence of a gravitational field violates the weak equivalence principle. Now it so happens that, in addition to general relativity, gravitation has an alternative, though equivalent, description, given by teleparallel gravity, a gauge theory for the translation group. In this theory torsion, instead of curvature, is assumed to represent the gravitational field. These two descriptions lead to the same classical results, but are conceptually different. In general relativity, curvature geometrizes the interaction while torsion, in teleparallel gravity, acts as a force, similar to the Lorentz force of electrodynamics. Because of this peculiar property, teleparallel gravity describes the gravitational interaction without requiring any of the equivalence principle versions. The replacement of general relativity by teleparallel gravity may, in consequence, lead to a conceptual reconciliation of gravitation with quantum mechanics. © 2006 American Institute of Physics.
Resumo:
We discuss conservation laws for gravity theories invariant under general coordinate and local Lorentz transformations. We demonstrate the possibility to formulate these conservation laws in many covariant and noncovariant(ly looking) ways. An interesting mathematical fact underlies such a diversity: there is a certain ambiguity in a definition of the (Lorentz-) covariant generalization of the usual Lie derivative. Using this freedom, we develop a general approach to the construction of invariant conserved currents generated by an arbitrary vector field on the spacetime. This is done in any dimension, for any Lagrangian of the gravitational field and of a (minimally or nonminimally) coupled matter field. A development of the regularization via relocalization scheme is used to obtain finite conserved quantities for asymptotically nonflat solutions. We illustrate how our formalism works by some explicit examples. © 2006 The American Physical Society.
Resumo:
Due to its underlying gauge structure, teleparallel gravity achieves a separation between inertial and gravitational effects. It can, in consequence, describe the isolated gravitational interaction without resorting to the equivalence principle, and is able to provide a tensorial definition for the energy-momentum density of the gravitational field. Considering the conceptual conflict between the local equivalence principle and the nonlocal uncertainty principle, the replacement of general relativity by its teleparallel equivalent can be considered an important step towards a prospective reconciliation between gravitation and quantum mechanics. © 2006 American Institute of Physics.
Resumo:
It is commonly assumed that the equivalence principle can coexist without conflict with quantum mechanics. We shall argue here that, contrary to popular belief, this principle does not hold in quantum mechanics. We illustrate this point by computing the second-order correction for the scattering of a massive scalar boson by a weak gravitational field, treated as an external field. The resulting cross-section turns out to be mass-dependent. A way out of this dilemma would be, perhaps, to consider gravitation without the equivalence principle. At first sight, this seems to be a too much drastic attitude toward general relativity. Fortunately, the teleparallel version of general relativity - a description of the gravitational interaction by a force similar to the Lorentz force of electromagnetism and that, of course, dispenses with the equivalence principle - is equivalent to general relativity, thus providing a consistent theory for gravitation in the absence of the aforementioned principle. © World Scientific Publishing Company.
Resumo:
As far as external gravitational fields described by Newton's theory are concerned, theory shows that there is an unavoidable conflict between the universality of free fall (Galileo's equivalence principle) and quantum mechanics - a result confirmed by experiment. Is this conflict due perhaps to the use of Newton's gravity, instead of general relativity, in the analysis of the external gravitational field? The response is negative. To show this we compute the low corrections to the cross-section for the scattering of different quantum particles by an external gravitational field, treated as an external field, in the framework of Einstein's linearized gravity. To first order the cross-sections are spin-dependent; if the calculations are pushed to the next order they become dependent upon energy as well. Therefore, the Galileo's equivalence and, consequently, the classical equivalence principle, is violated in both cases. We address these issues here.