994 resultados para Graphical Analysis.
Resumo:
A hybrid system to automatically detect, locate and classify disturbances affecting power quality in an electrical power system is presented in this paper. The disturbances characterized are events from an actual power distribution system simulated by the ATP (Alternative Transients Program) software. The hybrid approach introduced consists of two stages. In the first stage, the wavelet transform (WT) is used to detect disturbances in the system and to locate the time of their occurrence. When such an event is flagged, the second stage is triggered and various artificial neural networks (ANNs) are applied to classify the data measured during the disturbance(s). A computational logic using WTs and ANNs together with a graphical user interface (GU) between the algorithm and its end user is then implemented. The results obtained so far are promising and suggest that this approach could lead to a useful application in an actual distribution system. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.
Resumo:
Exploratory factor analysis is a widely used statistical technique in the social sciences. It attempts to identify underlying factors that explain the pattern of correlations within a set of observed variables. A statistical software package is needed to perform the calcula- tions. However, there are some limitations with popular statistical software packages, like SPSS. The R programming language is a free software package for statistical and graphical computing. It o ers many packages written by contributors from all over the world and programming resources that allow it to overcome the dialog limitations of SPSS. This paper o ers an SPSS dialog written in the R programming language with the help of some packages, so that researchers with little or no knowledge in programming, or those who are accustomed to making their calculations based on statistical dialogs, have more options when applying factor analysis to their data and hence can adopt a better approach when dealing with ordinal, Likert-type data.
Resumo:
Graphical user interfaces (GUIs) are critical components of todays software. Given their increased relevance, correctness and usability of GUIs are becoming essential. This paper describes the latest results in the development of our tool to reverse engineer the GUI layer of interactive computing systems. We use static analysis techniques to generate models of the user interface behaviour from source code. Models help in graphical user interface inspection by allowing designers to concentrate on its more important aspects. One particularly type of model that the tool is able to generate is state machines. The paper shows how graph theory can be useful when applied to these models. A number of metrics and algorithms are used in the analysis of aspects of the user interface's quality. The ultimate goal of the tool is to enable analysis of interactive system through GUIs source code inspection.
Resumo:
When developing interactive applications, considering the correctness of graphical user interfaces (GUIs) code is essential. GUIs are critical components of today's software, and contemporary software tools do not provide enough support for ensuring GUIs' code quality. GUIsurfer, a GUI reverse engineering tool, enables evaluation of behavioral properties of user interfaces. It performs static analysis of GUI code, generating state machines that can help in the evaluation of interactive applications. This paper describes the design, software architecture, and the use of GUIsurfer through an example. The tool is easily re-targetable, and support is available to Java/Swing, and WxHaskell. The paper sets the ground for a generalization effort to consider rich internet applications. It explores the GWT web applications' user interface programming toolkit.
Resumo:
Graphical user interfaces (GUIs) are critical components of today's open source software. Given their increased relevance, the correctness and usability of GUIs are becoming essential. This paper describes the latest results in the development of our tool to reverse engineer the GUI layer of interactive computing open source systems. We use static analysis techniques to generate models of the user interface behavior from source code. Models help in graphical user interface inspection by allowing designers to concentrate on its more important aspects. One particular type of model that the tool is able to generate is state machines. The paper shows how graph theory can be useful when applied to these models. A number of metrics and algorithms are used in the analysis of aspects of the user interface's quality. The ultimate goal of the tool is to enable analysis of interactive system through GUIs source code inspection.
Resumo:
There are many circumstances in which the effectiveness of preventive measures depends to a large extent on the compliance of the patient in changing his or her behavior or lifestyle. It is shown how economic techniques can be used (i) to describe the rationale of individuals and predict their behavior (Section 2); and (ii) to assess preventive measures that, by requiring a change of conduct, imply "costs" to the individual due to a decline in the quality of life (Appendix). Cigarette smoking and coronary heart disease are used as an illustration. While the analysis of Section 2 uses graphical techniques, a simple textbook-type of lifetime utility model with a mathematical emphasis is used in the Appendix. It is also shown that techniques often used to assess health care programs such as the QALYs (Quality-Adjusted Life Years) are inappropriate to the evaluation of preventive programs aiming at behavioral changes. Finally, topics that call for further research are indicated.
Resumo:
We describe a novel approach to explore DNA nucleotide sequence data, aiming to produce high-level categorical and structural information about the underlying chromosomes, genomes and species. The article starts by analyzing chromosomal data through histograms using fixed length DNA sequences. After creating the DNA-related histograms, a correlation between pairs of histograms is computed, producing a global correlation matrix. These data are then used as input to several data processing methods for information extraction and tabular/graphical output generation. A set of 18 species is processed and the extensive results reveal that the proposed method is able to generate significant and diversified outputs, in good accordance with current scientific knowledge in domains such as genomics and phylogenetics.
Resumo:
Background: A common task in analyzing microarray data is to determine which genes are differentially expressed across two (or more) kind of tissue samples or samples submitted under experimental conditions. Several statistical methods have been proposed to accomplish this goal, generally based on measures of distance between classes. It is well known that biological samples are heterogeneous because of factors such as molecular subtypes or genetic background that are often unknown to the experimenter. For instance, in experiments which involve molecular classification of tumors it is important to identify significant subtypes of cancer. Bimodal or multimodal distributions often reflect the presence of subsamples mixtures. Consequently, there can be genes differentially expressed on sample subgroups which are missed if usual statistical approaches are used. In this paper we propose a new graphical tool which not only identifies genes with up and down regulations, but also genes with differential expression in different subclasses, that are usually missed if current statistical methods are used. This tool is based on two measures of distance between samples, namely the overlapping coefficient (OVL) between two densities and the area under the receiver operating characteristic (ROC) curve. The methodology proposed here was implemented in the open-source R software. Results: This method was applied to a publicly available dataset, as well as to a simulated dataset. We compared our results with the ones obtained using some of the standard methods for detecting differentially expressed genes, namely Welch t-statistic, fold change (FC), rank products (RP), average difference (AD), weighted average difference (WAD), moderated t-statistic (modT), intensity-based moderated t-statistic (ibmT), significance analysis of microarrays (samT) and area under the ROC curve (AUC). On both datasets all differentially expressed genes with bimodal or multimodal distributions were not selected by all standard selection procedures. We also compared our results with (i) area between ROC curve and rising area (ABCR) and (ii) the test for not proper ROC curves (TNRC). We found our methodology more comprehensive, because it detects both bimodal and multimodal distributions and different variances can be considered on both samples. Another advantage of our method is that we can analyze graphically the behavior of different kinds of differentially expressed genes. Conclusion: Our results indicate that the arrow plot represents a new flexible and useful tool for the analysis of gene expression profiles from microarrays.
Resumo:
Global warming and the associated climate changes are being the subject of intensive research due to their major impact on social, economic and health aspects of the human life. Surface temperature time-series characterise Earth as a slow dynamics spatiotemporal system, evidencing long memory behaviour, typical of fractional order systems. Such phenomena are difficult to model and analyse, demanding for alternative approaches. This paper studies the complex correlations between global temperature time-series using the Multidimensional scaling (MDS) approach. MDS provides a graphical representation of the pattern of climatic similarities between regions around the globe. The similarities are quantified through two mathematical indices that correlate the monthly average temperatures observed in meteorological stations, over a given period of time. Furthermore, time dynamics is analysed by performing the MDS analysis over slices sampling the time series. MDS generates maps describing the stations’ locus in the perspective that, if they are perceived to be similar to each other, then they are placed on the map forming clusters. We show that MDS provides an intuitive and useful visual representation of the complex relationships that are present among temperature time-series, which are not perceived on traditional geographic maps. Moreover, MDS avoids sensitivity to the irregular distribution density of the meteorological stations.
Resumo:
We propose a graphical method to visualize possible time-varying correlations between fifteen stock market values. The method is useful for observing stable or emerging clusters of stock markets with similar behaviour. The graphs, originated from applying multidimensional scaling techniques (MDS), may also guide the construction of multivariate econometric models.
Resumo:
Software tools in education became popular since the widespread of personal computers. Engineering courses lead the way in this development and these tools became almost a standard. Engineering graduates are familiar with numerical analysis tools but also with simulators (e.g. electronic circuits), computer assisted design tools and others, depending on the degree. One of the main problems with these tools is when and how to start use them so that they can be beneficial to students and not mere substitutes for potentially difficult calculations or design. In this paper a software tool to be used by first year students in electronics/electricity courses is presented. The growing acknowledgement and acceptance of open source software lead to the choice of an open source software tool – Scilab, which is a numerical analysis tool – to develop a toolbox. The toolbox was developed to be used as standalone or integrated in an e-learning platform. The e-learning platform used was Moodle. The first approach was to assess the mathematical skills necessary to solve all the problems related to electronics and electricity courses. Analysing the existing circuit simulators software tools, it is clear that even though they are very helpful by showing the end result they are not so effective in the process of the students studying and self learning since they show results but not intermediate steps which are crucial in problems that involve derivatives or integrals. Also, they are not very effective in obtaining graphical results that could be used to elaborate reports and for an overall better comprehension of the results. The developed tool was based on the numerical analysis software Scilab and is a toolbox that gives their users the opportunity to obtain the end results of a circuit analysis but also the expressions obtained when derivative and integrals calculations, plot signals, obtain vector diagrams, etc. The toolbox runs entirely in the Moodle web platform and provides the same results as the standalone application. The students can use the toolbox through the web platform (in computers where they don't have installation privileges) or in their personal computers by installing both the Scilab software and the toolbox. This approach was designed for first year students from all engineering degrees that have electronics/electricity courses in their curricula.
Resumo:
The main objective of this thesis on flooding was to produce a detailed report on flooding with specific reference to the Clare River catchment. Past flooding in the Clare River catchment was assessed with specific reference to the November 2009 flood event. A Geographic Information System was used to produce a graphical representation of the spatial distribution of the November 2009 flood. Flood risk is prominent within the Clare River catchment especially in the region of Claregalway. The recent flooding events of November 2009 produced significant fluvial flooding from the Clare River. This resulted in considerable flood damage to property. There were also hidden costs such as the economic impact of the closing of the N17 until floodwater subsided. Land use and channel conditions are traditional factors that have long been recognised for their effect on flooding processes. These factors were examined in the context of the Clare River catchment to determine if they had any significant effect on flood flows. Climate change has become recognised as a factor that may produce more significant and frequent flood events in the future. Many experts feel that climate change will result in an increase in the intensity and duration of rainfall in western Ireland. This would have significant implications for the Clare River catchment, which is already vulnerable to flooding. Flood estimation techniques are a key aspect in understanding and preparing for flood events. This study uses methods based on the statistical analysis of recorded data and methods based on a design rainstorm and rainfall-runoff model to estimate flood flows. These provide a mathematical basis to evaluate the impacts of various factors on flooding and also to generate practical design floods, which can be used in the design of flood relief measures. The final element of the thesis includes the author’s recommendations on how flood risk management techniques can reduce existing flood risk in the Clare River catchment. Future implications to flood risk due to factors such as climate change and poor planning practices are also considered.
Resumo:
Continuing developments in science and technology mean that the amounts of information forensic scientists are able to provide for criminal investigations is ever increasing. The commensurate increase in complexity creates difficulties for scientists and lawyers with regard to evaluation and interpretation, notably with respect to issues of inference and decision. Probability theory, implemented through graphical methods, and specifically Bayesian networks, provides powerful methods to deal with this complexity. Extensions of these methods to elements of decision theory provide further support and assistance to the judicial system. Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science provides a unique and comprehensive introduction to the use of Bayesian decision networks for the evaluation and interpretation of scientific findings in forensic science, and for the support of decision-makers in their scientific and legal tasks. Includes self-contained introductions to probability and decision theory. Develops the characteristics of Bayesian networks, object-oriented Bayesian networks and their extension to decision models. Features implementation of the methodology with reference to commercial and academically available software. Presents standard networks and their extensions that can be easily implemented and that can assist in the reader's own analysis of real cases. Provides a technique for structuring problems and organizing data based on methods and principles of scientific reasoning. Contains a method for the construction of coherent and defensible arguments for the analysis and evaluation of scientific findings and for decisions based on them. Is written in a lucid style, suitable for forensic scientists and lawyers with minimal mathematical background. Includes a foreword by Ian Evett. The clear and accessible style of this second edition makes this book ideal for all forensic scientists, applied statisticians and graduate students wishing to evaluate forensic findings from the perspective of probability and decision analysis. It will also appeal to lawyers and other scientists and professionals interested in the evaluation and interpretation of forensic findings, including decision making based on scientific information.
Resumo:
Sampling issues represent a topic of ongoing interest to the forensic science community essentially because of their crucial role in laboratory planning and working protocols. For this purpose, forensic literature described thorough (Bayesian) probabilistic sampling approaches. These are now widely implemented in practice. They allow, for instance, to obtain probability statements that parameters of interest (e.g., the proportion of a seizure of items that present particular features, such as an illegal substance) satisfy particular criteria (e.g., a threshold or an otherwise limiting value). Currently, there are many approaches that allow one to derive probability statements relating to a population proportion, but questions on how a forensic decision maker - typically a client of a forensic examination or a scientist acting on behalf of a client - ought actually to decide about a proportion or a sample size, remained largely unexplored to date. The research presented here intends to address methodology from decision theory that may help to cope usefully with the wide range of sampling issues typically encountered in forensic science applications. The procedures explored in this paper enable scientists to address a variety of concepts such as the (net) value of sample information, the (expected) value of sample information or the (expected) decision loss. All of these aspects directly relate to questions that are regularly encountered in casework. Besides probability theory and Bayesian inference, the proposed approach requires some additional elements from decision theory that may increase the efforts needed for practical implementation. In view of this challenge, the present paper will emphasise the merits of graphical modelling concepts, such as decision trees and Bayesian decision networks. These can support forensic scientists in applying the methodology in practice. How this may be achieved is illustrated with several examples. The graphical devices invoked here also serve the purpose of supporting the discussion of the similarities, differences and complementary aspects of existing Bayesian probabilistic sampling criteria and the decision-theoretic approach proposed throughout this paper.