962 resultados para Graph cuts


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schizophrenia is postulated to be the prototypical dysconnection disorder, in which hallucinations are the core symptom. Due to high heterogeneity in methodology across studies and the clinical phenotype, it remains unclear whether the structural brain dysconnection is global or focal and if clinical symptoms result from this dysconnection. In the present work, we attempt to clarify this issue by studying a population considered as a homogeneous genetic sub-type of schizophrenia, namely the 22q11.2 deletion syndrome (22q11.2DS). Cerebral MRIs were acquired for 46 patients and 48 age and gender matched controls (aged 6-26, respectively mean age = 15.20 ± 4.53 and 15.28 ± 4.35 years old). Using the Connectome mapper pipeline (connectomics.org) that combines structural and diffusion MRI, we created a whole brain network for each individual. Graph theory was used to quantify the global and local properties of the brain network organization for each participant. A global degree loss of 6% was found in patients' networks along with an increased Characteristic Path Length. After identifying and comparing hubs, a significant loss of degree in patients' hubs was found in 58% of the hubs. Based on Allen's brain network model for hallucinations, we explored the association between local efficiency and symptom severity. Negative correlations were found in the Broca's area (p < 0.004), the Wernicke area (p < 0.023) and a positive correlation was found in the dorsolateral prefrontal cortex (DLPFC) (p < 0.014). In line with the dysconnection findings in schizophrenia, our results provide preliminary evidence for a targeted alteration in the brain network hubs' organization in individuals with a genetic risk for schizophrenia. The study of specific disorganization in language, speech and thought regulation networks sharing similar network properties may help to understand their role in the hallucination mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, several anonymization algorithms have appeared for privacy preservation on graphs. Some of them are based on random-ization techniques and on k-anonymity concepts. We can use both of them to obtain an anonymized graph with a given k-anonymity value. In this paper we compare algorithms based on both techniques in orderto obtain an anonymized graph with a desired k-anonymity value. We want to analyze the complexity of these methods to generate anonymized graphs and the quality of the resulting graphs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The object of this project is to schedule a ctitious European basketball competition with many teams situated a long distances. The schedule must be fair, feasible and economical, which means that the total distance trav- eled by every team must be the minimal possible. First, we de ne the sport competition terminology and study di erent competition systems, focusing on the NBA and the Euroleague systems. Then we de ne concepts of graph theory and spherical distance that will be needed. Next we propose a com- petition system, explaining where will be allocated the teams and how will be the scheduling. Then there is a description of the programs that have been implemented, and, nally, the complete schedule is displayed, and some possible improvements are mentioned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regression equations predicting dissectable muscle weight in rabbits from external measurements were presented. Bone weight and weight of muscle groups were also carcass predicted. Predictive capacity of external measurements, retail cuts and muscle groups on total muscle, percent muscle, total bone and muscle to bone ratio were studied separately. Measurements on dissected retail cuts should be included in ordcr to obtain good equations for prediction of percent muscle in the carcass. Equations for predicting the muscle to bone ratio using external mcasurcments and data from the dissection of one hind leg were suggested. The equations had generally high coefficients of determination. The coefficient of determination for prediction of dissectable muscle was 0.91, and for percent muscle in the carcass 0.79.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research work we searched for open source libraries which supports graph drawing and visualisation and can run in a browser. Subsequent these libraries were evaluated to find out which one is the best for this task. The result was the d3.js is that library which has the greatest functionality, flexibility and customisability. Afterwards we developed an open source software tool where d3.js was included and which was written in JavaScript so that it can run browser-based.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

WebGraphEd is an open source software for graph visualization and manipulation. It is especially designed to work for the web platform through a web browser. The web application has been written in JavaScript and compacted later, which makes it a very lightweight software. There is no need of additional software, and the only requirement is to have an HTML5 compliant browser. WebGraphEd works with scalable vector graphics (SVG), which it makes possible to create lossless graph drawings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the relationship between the periodic orbits of continuous maps on graphs and the topological entropy of the map. We show that the topological entropy of a graph map can be approximated by the entropy of its periodic orbits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the relationship between the periodic orbits of continuous maps on graphs and the topological entropy of the map. We show that the topological entropy of a graph map can be approximated by the entropy of its periodic orbits

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of domain-specific languages (DSLs) has been proposed as an approach to cost-e ectively develop families of software systems in a restricted application domain. Domain-specific languages in combination with the accumulated knowledge and experience of previous implementations, can in turn be used to generate new applications with unique sets of requirements. For this reason, DSLs are considered to be an important approach for software reuse. However, the toolset supporting a particular domain-specific language is also domain-specific and is per definition not reusable. Therefore, creating and maintaining a DSL requires additional resources that could be even larger than the savings associated with using them. As a solution, di erent tool frameworks have been proposed to simplify and reduce the cost of developments of DSLs. Developers of tool support for DSLs need to instantiate, customize or configure the framework for a particular DSL. There are di erent approaches for this. An approach is to use an application programming interface (API) and to extend the basic framework using an imperative programming language. An example of a tools which is based on this approach is Eclipse GEF. Another approach is to configure the framework using declarative languages that are independent of the underlying framework implementation. We believe this second approach can bring important benefits as this brings focus to specifying what should the tool be like instead of writing a program specifying how the tool achieves this functionality. In this thesis we explore this second approach. We use graph transformation as the basic approach to customize a domain-specific modeling (DSM) tool framework. The contributions of this thesis includes a comparison of di erent approaches for defining, representing and interchanging software modeling languages and models and a tool architecture for an open domain-specific modeling framework that e ciently integrates several model transformation components and visual editors. We also present several specific algorithms and tool components for DSM framework. These include an approach for graph query based on region operators and the star operator and an approach for reconciling models and diagrams after executing model transformation programs. We exemplify our approach with two case studies MICAS and EFCO. In these studies we show how our experimental modeling tool framework has been used to define tool environments for domain-specific languages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yam (Discorea sp) is a tuber rich in carbohydrates, vitamins and mineral salts, besides several components that serve as raw material for medicines. It grows well in tropical and subtropical climates and develops well in zones with an annual pluvial precipitation of around 1300mm, and with cultural treatments, its productivity can exceed 30t/ha. When harvested, the tubers possess about 70% of moisture, and are merchandised "in natura", in the atmospheric temperature, which can cause its fast deterioration. The present work studied the drying of the yam in the form of slices of 1.0 and 2.5cm thickness, as well as in the form of fillets with 1.0 x 1.0 x 5.0cm, with the drying air varying from 40 to 70°C. The equating of the process was accomplished, allowing to simulate the drying as a function of the conditions of the drying air and of the initial and final moisture of the product. Also investigated was the expense of energy as function of the air temperature. The drying in the form of fillets, with the air in a temperature range between 45 and 50°C, was shown to be the most viable process when combining both the quality of the product and the expense of energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hyper-star interconnection network was proposed in 2002 to overcome the drawbacks of the hypercube and its variations concerning the network cost, which is defined by the product of the degree and the diameter. Some properties of the graph such as connectivity, symmetry properties, embedding properties have been studied by other researchers, routing and broadcasting algorithms have also been designed. This thesis studies the hyper-star graph from both the topological and algorithmic point of view. For the topological properties, we try to establish relationships between hyper-star graphs with other known graphs. We also give a formal equation for the surface area of the graph. Another topological property we are interested in is the Hamiltonicity problem of this graph. For the algorithms, we design an all-port broadcasting algorithm and a single-port neighbourhood broadcasting algorithm for the regular form of the hyper-star graphs. These algorithms are both optimal time-wise. Furthermore, we prove that the folded hyper-star, a variation of the hyper-star, to be maixmally fault-tolerant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex networks can arise naturally and spontaneously from all things that act as a part of a larger system. From the patterns of socialization between people to the way biological systems organize themselves, complex networks are ubiquitous, but are currently poorly understood. A number of algorithms, designed by humans, have been proposed to describe the organizational behaviour of real-world networks. Consequently, breakthroughs in genetics, medicine, epidemiology, neuroscience, telecommunications and the social sciences have recently resulted. The algorithms, called graph models, represent significant human effort. Deriving accurate graph models is non-trivial, time-intensive, challenging and may only yield useful results for very specific phenomena. An automated approach can greatly reduce the human effort required and if effective, provide a valuable tool for understanding the large decentralized systems of interrelated things around us. To the best of the author's knowledge this thesis proposes the first method for the automatic inference of graph models for complex networks with varied properties, with and without community structure. Furthermore, to the best of the author's knowledge it is the first application of genetic programming for the automatic inference of graph models. The system and methodology was tested against benchmark data, and was shown to be capable of reproducing close approximations to well-known algorithms designed by humans. Furthermore, when used to infer a model for real biological data the resulting model was more representative than models currently used in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A complex network is an abstract representation of an intricate system of interrelated elements where the patterns of connection hold significant meaning. One particular complex network is a social network whereby the vertices represent people and edges denote their daily interactions. Understanding social network dynamics can be vital to the mitigation of disease spread as these networks model the interactions, and thus avenues of spread, between individuals. To better understand complex networks, algorithms which generate graphs exhibiting observed properties of real-world networks, known as graph models, are often constructed. While various efforts to aid with the construction of graph models have been proposed using statistical and probabilistic methods, genetic programming (GP) has only recently been considered. However, determining that a graph model of a complex network accurately describes the target network(s) is not a trivial task as the graph models are often stochastic in nature and the notion of similarity is dependent upon the expected behavior of the network. This thesis examines a number of well-known network properties to determine which measures best allowed networks generated by different graph models, and thus the models themselves, to be distinguished. A proposed meta-analysis procedure was used to demonstrate how these network measures interact when used together as classifiers to determine network, and thus model, (dis)similarity. The analytical results form the basis of the fitness evaluation for a GP system used to automatically construct graph models for complex networks. The GP-based automatic inference system was used to reproduce existing, well-known graph models as well as a real-world network. Results indicated that the automatically inferred models exemplified functional similarity when compared to their respective target networks. This approach also showed promise when used to infer a model for a mammalian brain network.