985 resultados para Graph G


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The product dimension of a graph G is defined as the minimum natural number l such that G is an induced subgraph of a direct product of l complete graphs. In this paper we study the product dimension of forests, bounded treewidth graphs and k-degenerate graphs. We show that every forest on n vertices has product dimension at most 1.441 log n + 3. This improves the best known upper bound of 3 log n for the same due to Poljak and Pultr. The technique used in arriving at the above bound is extended and combined with a well-known result on the existence of orthogonal Latin squares to show that every graph on n vertices with treewidth at most t has product dimension at most (t + 2) (log n + 1). We also show that every k-degenerate graph on n vertices has product dimension at most inverted right perpendicular5.545 k log ninverted left perpendicular + 1. This improves the upper bound of 32 k log n for the same by Eaton and Rodl.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The boxicity (cubicity) of a graph G, denoted by box(G) (respectively cub(G)), is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes (cubes) in ℝ k . The problem of computing boxicity (cubicity) is known to be inapproximable in polynomial time even for graph classes like bipartite, co-bipartite and split graphs, within an O(n 0.5 − ε ) factor for any ε > 0, unless NP = ZPP. We prove that if a graph G on n vertices has a clique on n − k vertices, then box(G) can be computed in time n22O(k2logk) . Using this fact, various FPT approximation algorithms for boxicity are derived. The parameter used is the vertex (or edge) edit distance of the input graph from certain graph families of bounded boxicity - like interval graphs and planar graphs. Using the same fact, we also derive an O(nloglogn√logn√) factor approximation algorithm for computing boxicity, which, to our knowledge, is the first o(n) factor approximation algorithm for the problem. We also present an FPT approximation algorithm for computing the cubicity of graphs, with vertex cover number as the parameter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Delaunay and Gabriel graphs are widely studied geo-metric proximity structures. Motivated by applications in wireless routing, relaxed versions of these graphs known as Locally Delaunay Graphs (LDGs) and Lo-cally Gabriel Graphs (LGGs) have been proposed. We propose another generalization of LGGs called Gener-alized Locally Gabriel Graphs (GLGGs) in the context when certain edges are forbidden in the graph. Unlike a Gabriel Graph, there is no unique LGG or GLGG for a given point set because no edge is necessarily in-cluded or excluded. This property allows us to choose an LGG/GLGG that optimizes a parameter of interest in the graph. We show that computing an edge max-imum GLGG for a given problem instance is NP-hard and also APX-hard. We also show that computing an LGG on a given point set with dilation ≤k is NP-hard. Finally, we give an algorithm to verify whether a given geometric graph G= (V, E) is a valid LGG.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Lovasz θ function of a graph, is a fundamental tool in combinatorial optimization and approximation algorithms. Computing θ involves solving a SDP and is extremely expensive even for moderately sized graphs. In this paper we establish that the Lovasz θ function is equivalent to a kernel learning problem related to one class SVM. This interesting connection opens up many opportunities bridging graph theoretic algorithms and machine learning. We show that there exist graphs, which we call SVM−θ graphs, on which the Lovasz θ function can be approximated well by a one-class SVM. This leads to a novel use of SVM techniques to solve algorithmic problems in large graphs e.g. identifying a planted clique of size Θ(n√) in a random graph G(n,12). A classic approach for this problem involves computing the θ function, however it is not scalable due to SDP computation. We show that the random graph with a planted clique is an example of SVM−θ graph, and as a consequence a SVM based approach easily identifies the clique in large graphs and is competitive with the state-of-the-art. Further, we introduce the notion of a ''common orthogonal labeling'' which extends the notion of a ''orthogonal labelling of a single graph (used in defining the θ function) to multiple graphs. The problem of finding the optimal common orthogonal labelling is cast as a Multiple Kernel Learning problem and is used to identify a large common dense region in multiple graphs. The proposed algorithm achieves an order of magnitude scalability compared to the state of the art.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let k be an integer and k >= 3. A graph G is k-chordal if G does not have an induced cycle of length greater than k. From the definition it is clear that 3-chordal graphs are precisely the class of chordal graphs. Duchet proved that, for every positive integer m, if G m is chordal then so is G(m+2). Brandst `` adt et al. in Andreas Brandsadt, Van Bang Le, and Thomas Szymczak. Duchet- type theorems for powers of HHD- free graphs. Discrete Mathematics, 177(1- 3): 9- 16, 1997.] showed that if G m is k - chordal, then so is G(m+2). Powering a bipartite graph does not preserve its bipartitedness. In order to preserve the bipartitedness of a bipartite graph while powering Chandran et al. introduced the notion of bipartite powering. This notion was introduced to aid their study of boxicity of chordal bipartite graphs. The m - th bipartite power G(m]) of a bipartite graph G is the bipartite graph obtained from G by adding edges (u; v) where d G (u; v) is odd and less than or equal to m. Note that G(m]) = G(m+1]) for each odd m. In this paper we show that, given a bipartite graph G, if G is k-chordal then so is G m], where k, m are positive integers with k >= 4

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the parameterized complexity of the following edge coloring problem motivated by the problem of channel assignment in wireless networks. For an integer q >= 2 and a graph G, the goal is to find a coloring of the edges of G with the maximum number of colors such that every vertex of the graph sees at most q colors. This problem is NP-hard for q >= 2, and has been well-studied from the point of view of approximation. Our main focus is the case when q = 2, which is already theoretically intricate and practically relevant. We show fixed-parameter tractable algorithms for both the standard and the dual parameter, and for the latter problem, the result is based on a linear vertex kernel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The boxicity (resp. cubicity) of a graph G(V, E) is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes (resp. cubes) in R-k. Equivalently, it is the minimum number of interval graphs (resp. unit interval graphs) on the vertex set V, such that the intersection of their edge sets is E. The problem of computing boxicity (resp. cubicity) is known to be inapproximable, even for restricted graph classes like bipartite, co-bipartite and split graphs, within an O(n(1-epsilon))-factor for any epsilon > 0 in polynomial time, unless NP = ZPP. For any well known graph class of unbounded boxicity, there is no known approximation algorithm that gives n(1-epsilon)-factor approximation algorithm for computing boxicity in polynomial time, for any epsilon > 0. In this paper, we consider the problem of approximating the boxicity (cubicity) of circular arc graphs intersection graphs of arcs of a circle. Circular arc graphs are known to have unbounded boxicity, which could be as large as Omega(n). We give a (2 + 1/k) -factor (resp. (2 + log n]/k)-factor) polynomial time approximation algorithm for computing the boxicity (resp. cubicity) of any circular arc graph, where k >= 1 is the value of the optimum solution. For normal circular arc (NCA) graphs, with an NCA model given, this can be improved to an additive two approximation algorithm. The time complexity of the algorithms to approximately compute the boxicity (resp. cubicity) is O(mn + n(2)) in both these cases, and in O(mn + kn(2)) = O(n(3)) time we also get their corresponding box (resp. cube) representations, where n is the number of vertices of the graph and m is its number of edges. Our additive two approximation algorithm directly works for any proper circular arc graph, since their NCA models can be computed in polynomial time. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Given a connected outerplanar graph G of pathwidth p, we give an algorithm to add edges to G to get a supergraph of G, which is 2-vertex-connected, outerplanar and of pathwidth O(p). This settles an open problem raised by Biedl 1], in the context of computing minimum height planar straight line drawings of outerplanar graphs, with their vertices placed on a two-dimensional grid. In conjunction with the result of this paper, the constant factor approximation algorithm for this problem obtained by Biedl 1] for 2-vertex-connected outerplanar graphs will work for all outer planar graphs. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We address the parameterized complexity ofMaxColorable Induced Subgraph on perfect graphs. The problem asks for a maximum sized q-colorable induced subgraph of an input graph G. Yannakakis and Gavril IPL 1987] showed that this problem is NP-complete even on split graphs if q is part of input, but gave a n(O(q)) algorithm on chordal graphs. We first observe that the problem is W2]-hard parameterized by q, even on split graphs. However, when parameterized by l, the number of vertices in the solution, we give two fixed-parameter tractable algorithms. The first algorithm runs in time 5.44(l) (n+#alpha(G))(O(1)) where #alpha(G) is the number of maximal independent sets of the input graph. The second algorithm runs in time q(l+o()l())n(O(1))T(alpha) where T-alpha is the time required to find a maximum independent set in any induced subgraph of G. The first algorithm is efficient when the input graph contains only polynomially many maximal independent sets; for example split graphs and co-chordal graphs. The running time of the second algorithm is FPT in l alone (whenever T-alpha is a polynomial in n), since q <= l for all non-trivial situations. Finally, we show that (under standard complexitytheoretic assumptions) the problem does not admit a polynomial kernel on split and perfect graphs in the following sense: (a) On split graphs, we do not expect a polynomial kernel if q is a part of the input. (b) On perfect graphs, we do not expect a polynomial kernel even for fixed values of q >= 2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An axis-parallel b-dimensional box is a Cartesian product R-1 x R-2 x ... x R-b where R-i is a closed interval of the form a(i),b(i)] on the real line. For a graph G, its boxicity box(G) is the minimum dimension b, such that G is representable as the intersection graph of boxes in b-dimensional space. Although boxicity was introduced in 1969 and studied extensively, there are no significant results on lower bounds for boxicity. In this paper, we develop two general methods for deriving lower bounds. Applying these methods we give several results, some of which are listed below: 1. The boxicity of a graph on n vertices with no universal vertices and minimum degree delta is at least n/2(n-delta-1). 2. Consider the g(n,p) model of random graphs. Let p <= 1 - 40logn/n(2.) Then with high `` probability, box(G) = Omega(np(1 - p)). On setting p = 1/2 we immediately infer that almost all graphs have boxicity Omega(n). Another consequence of this result is as follows: For any positive constant c < 1, almost all graphs on n vertices and m <= c((n)(2)) edges have boxicity Omega(m/n). 3. Let G be a connected k-regular graph on n vertices. Let lambda be the second largest eigenvalue in absolute value of the adjacency matrix of G. Then, the boxicity of G is a least (kappa(2)/lambda(2)/log(1+kappa(2)/lambda(2))) (n-kappa-1/2n). 4. For any positive constant c 1, almost all balanced bipartite graphs on 2n vertices and m <= cn(2) edges have boxicity Omega(m/n).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A rainbow matching of an edge-colored graph G is a matching in which no two edges have the same color. There have been several studies regarding the maximum size of a rainbow matching in a properly edge-colored graph G in terms of its minimum degree 3(G). Wang (2011) asked whether there exists a function f such that a properly edge-colored graph G with at least f (delta(G)) vertices is guaranteed to contain a rainbow matching of size delta(G). This was answered in the affirmative later: the best currently known function Lo and Tan (2014) is f(k) = 4k - 4, for k >= 4 and f (k) = 4k - 3, for k <= 3. Afterwards, the research was focused on finding lower bounds for the size of maximum rainbow matchings in properly edge-colored graphs with fewer than 4 delta(G) - 4 vertices. Strong edge-coloring of a graph G is a restriction of proper edge-coloring where every color class is required to be an induced matching, instead of just being a matching. In this paper, we give lower bounds for the size of a maximum rainbow matching in a strongly edge-colored graph Gin terms of delta(G). We show that for a strongly edge-colored graph G, if |V(G)| >= 2 |3 delta(G)/4|, then G has a rainbow matching of size |3 delta(G)/4|, and if |V(G)| < 2 |3 delta(G)/4|, then G has a rainbow matching of size |V(G)|/2] In addition, we prove that if G is a strongly edge-colored graph that is triangle-free, then it contains a rainbow matching of size at least delta(G). (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The separation dimension of a graph G is the smallest natural number k for which the vertices of G can be embedded in R-k such that any pair of disjoint edges in G can be separated by a hyperplane normal to one of the axes. Equivalently, it is the smallest possible cardinality of a family F of total orders of the vertices of G such that for any two disjoint edges of G, there exists at least one total order in F in which all the vertices in one edge precede those in the other. In general, the maximum separation dimension of a graph on n vertices is Theta(log n). In this article, we focus on bounded degree graphs and show that the separation dimension of a graph with maximum degree d is at most 2(9) (log*d)d. We also demonstrate that the above bound is nearly tight by showing that, for every d, almost all d-regular graphs have separation dimension at least d/2]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The boxicity (cubicity) of a graph G is the minimum natural number k such that G can be represented as an intersection graph of axis-parallel rectangular boxes (axis-parallel unit cubes) in R-k. In this article, we give estimates on the boxicity and the cubicity of Cartesian, strong and direct products of graphs in terms of invariants of the component graphs. In particular, we study the growth, as a function of d, of the boxicity and the cubicity of the dth power of a graph with respect to the three products. Among others, we show a surprising result that the boxicity and the cubicity of the dth Cartesian power of any given finite graph is, respectively, in O(log d/ log log d) and circle dot(d/ log d). On the other hand, we show that there cannot exist any sublinear bound on the growth of the boxicity of powers of a general graph with respect to strong and direct products. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conditions for the existence of heterochromatic Hamiltonian paths and cycles in edge colored graphs are well investigated in literature. A related problem in this domain is to obtain good lower bounds for the length of a maximum heterochromatic path in an edge colored graph G. This problem is also well explored by now and the lower bounds are often specified as functions of the minimum color degree of G - the minimum number of distinct colors occurring at edges incident to any vertex of G - denoted by v(G). Initially, it was conjectured that the lower bound for the length of a maximum heterochromatic path for an edge colored graph G would be 2v(G)/3]. Chen and Li (2005) showed that the length of a maximum heterochromatic path in an edge colored graph G is at least v(G) - 1, if 1 <= v(G) <= 7, and at least 3v(G)/5] + 1 if v(G) >= 8. They conjectured that the tight lower bound would be v(G) - 1 and demonstrated some examples which achieve this bound. An unpublished manuscript from the same authors (Chen, Li) reported to show that if v(G) >= 8, then G contains a heterochromatic path of length at least 120 + 1. In this paper, we give lower bounds for the length of a maximum heterochromatic path in edge colored graphs without small cycles. We show that if G has no four cycles, then it contains a heterochromatic path of length at least v(G) - o(v(G)) and if the girth of G is at least 4 log(2)(v(G)) + 2, then it contains a heterochromatic path of length at least v(G) - 2, which is only one less than the bound conjectured by Chen and Li (2005). Other special cases considered include lower bounds for the length of a maximum heterochromatic path in edge colored bipartite graphs and triangle-free graphs: for triangle-free graphs we obtain a lower bound of 5v(G)/6] and for bipartite graphs we obtain a lower bound of 6v(G)-3/7]. In this paper, it is also shown that if the coloring is such that G has no heterochromatic triangles, then G contains a heterochromatic path of length at least 13v(G)/17)]. This improves the previously known 3v(G)/4] bound obtained by Chen and Li (2011). We also give a relatively shorter and simpler proof showing that any edge colored graph G contains a heterochromatic path of length at least (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The boxicity (respectively cubicity) of a graph G is the least integer k such that G can be represented as an intersection graph of axis-parallel k-dimensional boxes (respectively k-dimensional unit cubes) and is denoted by box(G) (respectively cub(G)). It was shown by Adiga and Chandran (2010) that for any graph G, cub(G) <= box(G) log(2) alpha(G], where alpha(G) is the maximum size of an independent set in G. In this note we show that cub(G) <= 2 log(2) X (G)] box(G) + X (G) log(2) alpha(G)], where x (G) is the chromatic number of G. This result can provide a much better upper bound than that of Adiga and Chandran for graph classes with bounded chromatic number. For example, for bipartite graphs we obtain cub(G) <= 2(box(G) + log(2) alpha(G)] Moreover, we show that for every positive integer k, there exist graphs with chromatic number k such that for every epsilon > 0, the value given by our upper bound is at most (1 + epsilon) times their cubicity. Thus, our upper bound is almost tight. (c) 2015 Elsevier B.V. All rights reserved.