977 resultados para Gram-Positive Bacterial Infections


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deletion mutants of the two sortase genes of Enterococcus faecalis OG1RF were constructed. srtC (renamed here bps for biofilm and pilus-associated sortase) was previously shown to be necessary for the production of Ebp pili and important for biofilm formation and endocarditis. Here, we report that a srtA deletion mutant showed a small (5%) yet significant (P = 0.037) reduction in biofilm relative to OG1RF, while a DeltasrtA Deltabps double mutant showed a much greater reduction (74% versus OG1RF and 44% versus the Deltabps mutant). In a murine urinary tract infection (UTI), the 50% infective doses of both the DeltasrtA Deltabps and Deltabps mutants were approximately 2 log10 greater than that of OG1RF or the DeltasrtA mutant. Similarly, approximately 2 log10 fewer bacteria were recovered from the kidneys after infection with the Deltabps mutant (P = 0.017) and the DeltasrtA Deltabps double mutant (P = 0.022) compared to wild-type strain OG1RF. In a competition UTI, the Deltabps mutant was slightly, but not significantly, less attenuated than the DeltasrtA Deltabps double mutant. Fluorescence-activated cell sorter analysis with Ebp-specific antibodies confirmed that a minority of OG1RF cells express Ebp pili on their surface in vitro and that Bps has a major role in Ebp pilus biogenesis but also indicated a function for SrtA in surface localization of the pilus subunit protein EbpA. In conclusion, deletion of bps had a major effect on virulence in murine UTIs, as well as biofilm; deletion of srtA from OG1RF had little effect on these phenotypes, but its deletion from a bps mutant had a pronounced effect on biofilm, suggesting that Bps and/or the proteins it anchors may compensate for the loss of some SrtA function(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deletion mutants of the two sortase genes of Enterococcus faecalis OG1RF were constructed. srtC (renamed here bps for biofilm and pilus-associated sortase) was previously shown to be necessary for the production of Ebp pili and important for biofilm formation and endocarditis. Here, we report that a srtA deletion mutant showed a small (5%) yet significant (P = 0.037) reduction in biofilm relative to OG1RF, while a DeltasrtA Deltabps double mutant showed a much greater reduction (74% versus OG1RF and 44% versus the Deltabps mutant). In a murine urinary tract infection (UTI), the 50% infective doses of both the DeltasrtA Deltabps and Deltabps mutants were approximately 2 log10 greater than that of OG1RF or the DeltasrtA mutant. Similarly, approximately 2 log10 fewer bacteria were recovered from the kidneys after infection with the Deltabps mutant (P = 0.017) and the DeltasrtA Deltabps double mutant (P = 0.022) compared to wild-type strain OG1RF. In a competition UTI, the Deltabps mutant was slightly, but not significantly, less attenuated than the DeltasrtA Deltabps double mutant. Fluorescence-activated cell sorter analysis with Ebp-specific antibodies confirmed that a minority of OG1RF cells express Ebp pili on their surface in vitro and that Bps has a major role in Ebp pilus biogenesis but also indicated a function for SrtA in surface localization of the pilus subunit protein EbpA. In conclusion, deletion of bps had a major effect on virulence in murine UTIs, as well as biofilm; deletion of srtA from OG1RF had little effect on these phenotypes, but its deletion from a bps mutant had a pronounced effect on biofilm, suggesting that Bps and/or the proteins it anchors may compensate for the loss of some SrtA function(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we present a trilocus sequence typing (TLST) scheme based on intragenic regions of two antigenic genes, ace and salA (encoding a collagen/laminin adhesin and a cell wall-associated antigen, respectively), and a gene associated with antibiotic resistance, lsa (encoding a putative ABC transporter), for subspecies differentiation of Enterococcus faecalis. Each of the alleles was analyzed using 50 E. faecalis isolates representing 42 diverse multilocus sequence types (ST(M); based on seven housekeeping genes) and four groups of clonally linked (by pulsed-field gel electrophoresis [PFGE]) isolates. The allelic profiles and/or concatenated sequences of the three genes agreed with multilocus sequence typing (MLST) results for typing of 49 of the 50 isolates; in addition to the one exception, two isolates were found to have identical TLST types but were single-locus variants (differing by a single nucleotide) by MLST and were therefore also classified as clonally related by MLST. TLST was also comparable to PFGE for establishing short-term epidemiological relationships, typing all isolates classified as clonally related by PFGE with the same type. TLST was then applied to representative isolates (of each PFGE subtype and isolation year) of a collection of 48 hospital isolates and demonstrated the same relationships between isolates of an outbreak strain as those found by MLST and PFGE. In conclusion, the TLST scheme described here was shown to be successful for investigating short-term epidemiology in a hospital setting and may provide an alternative to MLST for discriminating isolates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceftobiprole (BAL9141) is an investigational cephalosporin with broad in vitro activity against gram-positive cocci, including enterococci. Ceftobiprole MICs were determined for 93 isolates of Enterococcus faecalis (including 16 beta-lactamase [Bla] producers and 17 vancomycin-resistant isolates) by an agar dilution method following the Clinical and Laboratory Standards Institute recommendations. Ceftobiprole MICs were also determined with a high inoculum concentration (10(7) CFU/ml) for a subset of five Bla producers belonging to different previously characterized clones by a broth dilution method. Time-kill and synergism studies (with either streptomycin or gentamicin) were performed with two beta-lactamase-producing isolates (TX0630 and TX5070) and two vancomycin-resistant isolates (TX2484 [VanB] and TX2784 [VanA]). The MICs of ceftobiprole for 50 and 90% of the isolates tested were 0.25 and 1 microg/ml, respectively. All Bla producers and vancomycin-resistant isolates were inhibited by concentrations of

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. The genera Enterococcus, Staphylococcus and Streptococcus are recognized as important Gram-positive human pathogens. The aim of this study was to evaluate the performance of Vitek 2 in identifying Gram-positive cocci and their antimicrobial susceptibilities. Methods. One hundred four isolates were analyzed to determine the accuracy of the automated system for identifying the bacteria and their susceptibility to oxacillin and vancomycin. Results. The system correctly identified 77.9% and 97.1% of the isolates at the species and genus levels, respectively. Additionally, 81.8% of the Vitek 2 results agreed with the known antimicrobial susceptibility profiles. Conclusion. Vitek 2 correctly identified the commonly isolated strains; however, the limitations of the method may lead to ambiguous findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengenharia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gram-positive bacterial pathogens that secrete cytotoxic pore-forming toxins, such as Staphylococcus aureus and Streptococcus pneumoniae, cause a substantial burden of disease. Inspired by the principles that govern natural toxin-host interactions, we have engineered artificial liposomes that are tailored to effectively compete with host cells for toxin binding. Liposome-bound toxins are unable to lyse mammalian cells in vitro. We use these artificial liposomes as decoy targets to sequester bacterial toxins that are produced during active infection in vivo. Administration of artificial liposomes within 10 h after infection rescues mice from septicemia caused by S. aureus and S. pneumoniae, whereas untreated mice die within 24-33 h. Furthermore, liposomes protect mice against invasive pneumococcal pneumonia. Composed exclusively of naturally occurring lipids, tailored liposomes are not bactericidal and could be used therapeutically either alone or in conjunction with antibiotics to combat bacterial infections and to minimize toxin-induced tissue damage that occurs during bacterial clearance

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial infections are very common and represent one of the most important reasons of progression of liver failure, development of liver-related complications, and mortality in patients with cirrhosis. In fact, bacterial infections may be a triggering factor for the occurrence of gastrointestinal bleeding, hypervolemic hyponatremia, hepatic encephalopathy, kidney failure, and development of acute-on-chronic liver failure. Moreover, infections are a very common cause of repeated hospitalizations, impaired health-related quality of life, and increased healthcare costs in cirrhosis. Bacterial infections develop as a consequence of immune dysfunction that occurs progressively during the course of cirrhosis. In a significant proportion of patients, infections are caused by gram-negative bacteria from intestinal origin, yet gram-positive bacteria are a frequent cause of infection, particularly in hospitalized patients. In recent years, infections caused by multidrug-resistant bacteria are becoming an important clinical problem in many countries. The reduction of the negative clinical impact of infections in patients with cirrhosis may be achieved by a combination of prophylactic measures, such as administration of antibiotics, to reduce the occurrence of infections in high-risk groups together with early identification and management of infection once it has developed. Investigation on the mechanisms of altered gut microflora, translocation of bacteria, and immune dysfunction may help develop more effective and safe methods of prevention compared to those that are currently available. Moreover, research on biomarkers of early infection may be useful in early diagnosis and treatment of infections. The current manuscript reports an in-depth review and a position statement on bacterial infections in cirrhosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gram-positive microorganisms, specifically coagulase-negative staphylococci are the most common species recovered from clinical culture specimens of patients with end-stage renal disease. The propensity of coagulase-negative staphylococci (CNS) to cause infection in this patient group has been widely debated. However, it is still unclear how this usually avirulent commensal microorganism produces infection that contributes to high rates of morbidity and mortality in patients with end-stage renal disease. The aim of this thesis was to investigate the rate, geographical distribution, molecular and phenotypic mechanisms of Gram-positive microorganisms associated with infection in renal dialysis patients. In addition, it sought to assess the value of early serological diagnosis of dialysis catheter-associated infection and the effect of antimicrobial treatment regimens on the faecal carriage of enteric microorganisms. In this study, the incidence of haemodialysis catheter-associated infection was established with the Meditrend audit tool. This tool was used to assess the infection outcomes of catheter insertion and management procedures until the catheter was explanted. Introduction of a catheter management protocol decreased the incidence of catheter-related infection. Staphylococcal species recovered from episodes of haemodialysis catheter-associated infection and continuous ambulatory peritoneal dialysis (CAPD)-associated peritonitis were genotyped by determination of macrorestriction profiles with pulsed-field gel electrophoresis. This highlighted horizontal transfer of microorganisms between different patients and the environment. The phenotypic characteristics of these strains were also investigated to determine characteristics that could be used as markers for dialysis catheter-associated infection. The expression of elastase, lipase and esterase by CNS was significantly associated with infection. A rapid enzyme-linked immunosorbent assay incorporating a novel staphylococcal antigen (lipid S) was used to evaluate the early detection of anti-staphylococcal immunoglobulin gamma in patient sera. The comparison of culture positive and culture negative patients demonstrated a steady state of immune activation in both groups. However anti-lipid S serum antibody titres > 1000 were found to be a predictor of infection. The effect on faecal carriage of vancomycin resistant enterococci (VRE) and Clostridium difficile toxins in patients treated with CAPD when empiric cephalosporin therapy was substituted for piperacillin/tazobactam was investigated. The introduction of piperacillin/tazobactam demonstrated a decrease in the faecal carriage of VRE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution structural information on optimally preserved bacterial cells can be obtained with cryo-electron microscopy of vitreous sections. With the help of this technique, the existence of a periplasmic space between the plasma membrane and the thick peptidoglycan layer of the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus was recently shown. This raises questions about the mode of polymerization of peptidoglycan. In the present study, we report the structure of the cell envelope of three gram-positive bacteria (B. subtilis, Streptococcus gordonii, and Enterococcus gallinarum). In the three cases, a previously undescribed granular layer adjacent to the plasma membrane is found in the periplasmic space. In order to better understand how nascent peptidoglycan is incorporated into the mature peptidoglycan, we investigated cellular regions known to represent the sites of cell wall production. Each of these sites possesses a specific structure. We propose a hypothetic model of peptidoglycan polymerization that accommodates these differences: peptidoglycan precursors could be exported from the cytoplasm to the periplasmic space, where they could diffuse until they would interact with the interface between the granular layer and the thick peptidoglycan layer. They could then polymerize with mature peptidoglycan. We report cytoplasmic structures at the E. gallinarum septum that could be interpreted as cytoskeletal elements driving cell division (FtsZ ring). Although immunoelectron microscopy and fluorescence microscopy studies have demonstrated the septal and cytoplasmic localization of FtsZ, direct visualization of in situ FtsZ filaments has not been obtained in any electron microscopy study of fixed and dehydrated bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A total of 1,021 extended-spectrum-β-lactamase-producing Escherichia coli (ESBLEC) isolates obtained in 2006 during a Spanish national survey conducted in 44 hospitals were analyzed for the presence of the O25b:H4-B2-ST131 (sequence type 131) clonal group. Overall, 195 (19%) O25b-ST131 isolates were detected, with prevalence rates ranging from 0% to 52% per hospital. Molecular characterization of 130 representative O25b-ST131 isolates showed that 96 (74%) were positive for CTX-M-15, 15 (12%) for CTX-M-14, 9 (7%) for SHV-12, 6 (5%) for CTX-M-9, 5 (4%) for CTX-M-32, and 1 (0.7%) each for CTX-M-3 and the new ESBL enzyme CTX-M-103. The 130 O25b-ST131 isolates exhibited relatively high virulence scores (mean, 14.4 virulence genes). Although the virulence profiles of the O25b-ST131 isolates were fairly homogeneous, they could be classified into four main virotypes based on the presence or absence of four distinctive virulence genes: virotypes A (22%) (afa FM955459 positive, iroN negative, ibeA negative, sat positive or negative), B (31%) (afa FM955459 negative, iroN positive, ibeA negative, sat positive or negative), C (32%) (afa FM955459 negative, iroN negative, ibeA negative, sat positive), and D (13%) (afa FM955459 negative, iroN positive or negative, ibeA positive, sat positive or negative). The four virotypes were also identified in other countries, with virotype C being overrepresented internationally. Correspondingly, an analysis of XbaI macrorestriction profiles revealed four major clusters, which were largely virotype specific. Certain epidemiological and clinical features corresponded with the virotype. Statistically significant virotype-specific associations included, for virotype B, older age and a lower frequency of infection (versus colonization), for virotype C, a higher frequency of infection, and for virotype D, younger age and community-acquired infections. In isolates of the O25b:H4-B2-ST131 clonal group, these findings uniquely define four main virotypes, which are internationally distributed, correspond with pulsed-field gel electrophoresis (PFGE) profiles, and exhibit distinctive clinical-epidemiological associations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé La structure, ou l'architecture, des êtres vivants définit le cadre dans lequel la physique de la vie s'accomplit. La connaissance de cette structure dans ses moindres détails est un but essentiel de la biologie. Son étude est toutefois entravée par des limitations techniques. Malgré son potentiel théorique, la microscopie électronique n'atteint pas une résolution atomique lorsqu'elle est appliquée ä la matièxe biologique. Cela est dû en grande partie au fait qu'elle contient beaucoup d'eau qui ne résiste pas au vide du microscope. Elle doit donc être déshydratée avant d'être introduite dans un microscope conventionnel. Des artéfacts d'agrégation en découlent inévitablement. La cryo-microscopie électronique des sections vitreuses (CEMOVIS) a ëté développée afin de résoudre cela. Les spécimens sont vitrifiés, c.-à-d. que leur eau est immobilisée sans cristalliser par le froid. Ils sont ensuite coupés en sections ultrafines et celles-ci sont observées à basse température. Les spécimens sont donc observés sous forme hydratée et non fixée; ils sont proches de leur état natif. Durant longtemps, CEMOVIS était très difficile à exécuter mais ce n'est plus le cas. Durant cette thèse, CEMOVIS a été appliqué à différents spécimens. La synapse du système nerveux central a été étudiée. La présence dans la fente synaptique d'une forte densité de molécules organisées de manière périodique a été démontrée. Des particules luminales ont été trouvées dans Ies microtubules cérébraux. Les microtubules ont servi d'objets-test et ont permis de démontrer que des détails moléculaires de l'ordre du nm sont préservés. La compréhension de la structure de l'enveloppe cellulaire des bactéries Grampositives aété améliorée. Nos observations ont abouti à l'élaboration d'un nouveau modèle hypothétique de la synthèse de la paroi. Nous avons aussi focalisé notre attention sur le nucléoïde bactérien et cela a suscité un modèle de la fonction des différents états structuraux du nucléoïde. En conclusion, cette thèse a démontré que CEMOVIS est une excellente méthode poux étudier la structure d'échantillons biologiques à haute résolution. L'étude de la structure de divers aspects des êtres vivants a évoqué des hypothèses quant à la compréhension de leur fonctionnement. Summary The structure, or the architecture, of living beings defines the framework in which the physics of life takes place. Understanding it in its finest details is an essential goal of biology. Its study is however hampered by technical limitations. Despite its theoretical potential, electron microscopy cannot resolve individual atoms in biological matter. This is in great part due to the fact. that it contains a lot of water that cannot stand the vacuum of the microscope. It must therefore be dehydrated before being introduced in a conventional mìcroscope. Aggregation artefacts unavoidably happen. Cryo-electron microscopy of vitreous sections (CEMOVIS) has been developed to solve this problem. Specimens are vitrified, i.e. they are rapidly cooled and their water is immobilised without crystallising by the cold. They are then. sectioned in ultrathin slices, which are observed at low temperatures. Specimens are therefore observed in hydrated and unfixed form; they are close to their native state. For a long time, CEMOVIS was extremely tedious but this is not the case anymore. During this thesis, CEMOVIS was applied to different specimens. Synapse of central nervous system was studied. A high density of periodically-organised molecules was shown in the synaptic cleft. Luminal particles were found in brain microtubules. Microtubules, used as test specimen, permitted to demonstrate that molecular details of the order of nm .are preserved. The understanding of the structure of cell envelope of Gram-positive bacteria was improved. Our observations led to the elaboration of a new hypothetic model of cell wall synthesis. We also focused our attention on bacterial nucleoids and this also gave rise to a functional model of nucleoid structural states. In conclusion, this thesis demonstrated that CEMOVIS is an excellent method for studying the structure of bìologìcal specimens at high resolution. The study of the structure of various aspects of living beings evoked hypothesis for their functioning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapport de synthèse : L'immunité innée regroupe les mécanismes moléculaires et cellulaires formant la première ligne de défense contre les infections microbiennes. La détection des micro-organismes pathogènes est assurée par des cellules sentinelles (cellules dendritiques et macrophages) qui jouent un rôle fondamental dans l'initiation des mécanismes de défense de l'hôte. Au contact de produits microbiens, ces cellules produisent un large échantillonnage de molécules, dont des cytokines, impliquées dans le développement de la réponse inflammatoire. La régulation de cette réponse relève d'un équilibre délicat, son insuffisance tant que son excès pouvant compromettre le devenir des patients infectés. La sepsis sévère et le choc septique représentent les formes les plus sévères d'infection, et leur mortalité demeure élevée (25 à 30% pour la sepsis sévère et 50 à 60% pour le choc septique). De plus, l'incidence de la sepsis tend à augmenter, atteignant en 2000 plus de 240 cas pour 100'000 personnes en Grande-Bretagne. La sepsis est caractérisée dans sa phase aiguë par une réponse inflammatoire exubérante. La plupart des thérapies visant à la bloquer ont toutefois montré des bénéfices incertains lors de leur application clinique. Il est donc impératif d'identifier de nouvelles cibles thérapeutiques. Les "Toll-like receptors" (TLRs) sont une famille de récepteurs qui jouent un rôle fondamental dans la détection des micro-organismes par les cellules du système immunitaire inné. Parmi eux, TLR4 est indispensable à la reconnaissance du lipopolysaccharide (LPS) des bactéries Gram-négatives. L'interaction entre TLR4 et le LPS représentant un élément précoce de la réponse de l'hôte à l'infection, nous avons émit l'hypothèse que TLR4 pourrait représenter une cible de choix en vue du développement de nouvelles thérapies contre la sepsis. Dans l'objectif de valider ce concept, nous avons, dans un premier temps, démontré que des souris génétiquement déficientes en TLR4 étaient totalement résistantes au choc septique induit par Escherichia coli (E. coli), une bactérie Gram-négative fréquemment responsable de sepsis. Forts de cette observation, nous avons développé une molécule recombinante composée du domaine extracellulaire de TLR4 fusionné à la partie IgGi-Fc. Cette molécule soluble, qui inhibait la réponse des macrophages au LPS in vitro, a été utilisée pour générer des anticorps anti-TLR4 chez le lapin. La spécificité et l'efficacité de ces anticorps ont été prouvées en démontrant que les anti-TLR4 bloquaient les signaux d'activation intracellulaire et la production de TNF et d'IL-6 en réponse au LPS et aux bactéries Gram-négatives in vitro et in vivo. Enfin, l'efficacité des ces anticorps a été testée dans des modèles de sepsis chez la souris. Ainsi, l'injection prophylactique (-lh) ou thérapeutique (+3h) d'anticorps anti-TLR4 réduisait la production de TNF et protégeait les animaux de la mort. De manière spectaculaire, ces anticorps réduisaient également la production de TNF et protégeaient de la sepsis à E. coli lorsqu'ils étaient administrés de manière prophylactique (-4h) et thérapeutique, jusqu'à 13 heures après l'initiation de l'infection. Ces résultats indiquent donc qu'il est possible de bloquer le développement de la réponse inflammatoire et de protéger du choc septique à bactéries Gram-négatives en utilisant des thérapies ciblant TLR4. Par ailleurs, ils suggèrent qu'une fenêtre d'opportunité de plusieurs heures pourrait être mise à profit pour initier un traitement chez les patients septiques. Ces résultats devraient encourager la poursuite des essais cliniques en cours qui visent à tester l'efficacité de thérapies dirigées contre TLR4 comme traitement complémentaire de la sepsis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gram-positive infections including those due to methicillin-resistant staphylococci occur frequently in febrile neutropaenic patients. Although few data support the empirical addition of a glycopeptide antibiotic to the standard broad-spectrum antibiotic regimen, these agents are often used in many cancer centres. The emergence of infections due to vancomycin- resistant enterococci and glycopeptide-intermediate staphylococci has led to recommendations for a restricted use of glycopeptide antibiotics. The objective of the present work was to formulate evidence-based guidelines for the empirical use of anti- Gram-positive antibiotics in neutropaenic patients with acute leukaemia.