990 resultados para Grain storage
Resumo:
Glutens, the storage proteins in wheat grains, are a major source of protein in human nutrition. The protein composition of wheat has therefore been an important focus of cereal research. Proteomic tools have been used to describe the genetic diversity of wheat germplasms from different origins at the level of polymorphisms in alleles encoding glutenin and gliadin, the two main proteins of gluten. More recently, proteomics has been used to understand the impact of specific gluten proteins on wheat quality. Here we review the impact of proteomics on the study of gluten proteins as it has evolved from fractionation and electrophoretic techniques to advanced mass spectrometry. In the postgenome era, proteomics is proving to be essential in the effort to identify and understand the interactions between different gluten proteins. This is helping to fill in gaps in our knowledge of how the technological quality of wheat is determined by the interaction between genotype and environment. We also collate information on the various storage protein alleles identified and their prevalence, which makes it possible to infer the effects of wheat selection on grain protein content. We conclude by reviewing the more recent use of transgenesis aimed at improving the quality of gluten.
Resumo:
"July 1937."
Resumo:
Evidence for the presence of storage pits described in Hittite texts by the Sumerogram "ÉSAG" is presented from Kaman-Kalehöyük, a multi-period tell site in central Turkey occupied during the second and first millennia BC. Small earthen pits matching the description of "ÉSAG" were part of the normal suite of domestic installations at the site throughout the period. Similar to pits seen across western Eurasia, they were probably used to store seed corn or seed for trade. Large earthen pits (>7m in diameter) were also present that matched the description of the "ÉSAG" form, and in some cases contained archaeological cereal remains. Evidence from Kaman shows "ÉSAG" were part of Anatolian life for at least 4,000 years and suggests that the term was generic for lined, earthen storage pits. The presence of so many small pits at Kaman-Kalehöyük showed that it was an agricultural production site for much of its existence. The appearance of the large pits, confined to the Hittite period, reflects centralised control of grain supply, probably by the Hittite Kingdom, and fits a pattern seen at other sites in the region during the second millennium BC. /// Hitit metinlerinde Sumerogram "ÉSAG" ile tanimlanan depo çukurlarinin varliğina dair kanit, Orta Anadolu'da M.Ö. İkinci ve Birinci binde iskan edilmiş çok dönemli bir yerleşim alani olan Kaman-Kalehöyük'ten taninmaktadir. Küçük toprak çukurlar "ÉSAG" in tanimlamasina uygun olarak bu dönem süresince normal ev düzeninin bir parçasi olarak karşimiza çikmiştir. Çukurlar, Bati Avrasya'daki benzer çukurlar gibi olasilikla ticaret maksadi ile misir tohumu ya da tohum muhafaza etmişlerdir. "ÉSAG" formunun tanimina uyan büyük toprak çukurlara (çapi 7m. den büyük) rağmen bunlarin tahil depolama ile ilgili bağlantilari tam olarak belirlenmemiştir. Kaman'daki delil, "ÉSAG" in en az 4,000 yildir Anadolu yaşaminin bir parçasi olduğunu ve bu sözcüğün sivanmiş toprak çukurlar için kullanildiğini işaret etmektedir. Kaman-Kalehöyük'te ele geçen birçok küçük çukur, yerleşimin varliğini sürdürdüǧü sürecin büyük bir bölümünde zirai üretim yapildiğini göstermektedir. Hitit Döneminde büyük çukurlarin ortaya çikmasi muhtemelen Hitit Kralliği tarafindan gerçekleştirilen tahil tedarikinin merkezi kontrolünü yansitmakta ve M.Ö. İkinci binde bu bölgedeki diğer yerleşim alanlarinda görülen şekle uymaktadir.
Resumo:
We outline a philosophical approach to Grand Challenge projects, with particular reference to our experience in our food security project involving the protection of stored grain from insect attack in two countries on different continents. A key consideration throughout has been the management of resistance in these pests to the valuable fumigant phosphine. Emphasis is given to the chain of research issues that required solution and the assembly of a well-integrated team, overlapping in skills for effective communication, in each country to solve the problems identified along that chain. A crucial aspect to maintaining direction is the inclusion of key end users in all deliberations, as well as the establishment and maintenance of effective outlets for the dissemination of practical recommendations. We finish with a summary of our achievements with respect to our approach to this food security Grand Challenge.
Resumo:
Sulfuryl fluoride (SF), an effective structural fumigant, is registered recently as Profume™ for controlling insect pests of stored grains and processed commodities. Information on its effectiveness in disinfestation of bulk grain, however, is limited. The ongoing problem with the strong level of resistance to phosphine has been addressed recently through deployment of SF as a ‘resistance breaker’ in bulk storages in Australia. This paper discusses important results on the efficacy of SF against key phosphine- resistant insect pests, lesser grain borer, Rhyzopertha dominca, red flour beetle, Tribolium castaneum, rice weevil, Sitophilus oryzae and the rusty grain beetle, Cryptolestes ferrugineus. We have established CT (g-hm3) profiles for SF against these insect pests at two temperature regimes 25 and 30°C, that showed that both temperature and exposure period (t) has significant influence on the effectiveness of SF than the concentration. Over a seven days fumigation period, CTs of 800 and 400 g-hm3 achieved complete control of all the target pests, including the most strongly phosphine - resistant species, C. ferrugineus at 25 and 30°C, respectively. Results from four industry scale field trials involving currently registered rate of SF (1500 g-hm3) over 2–14 d exposure period, confirmed its effectiveness in achieving complete control of the target pest species. The assessment of postfumigation grain samples across all the test storages indicated that the reinfestation occurs after three months. Monitoring resistance to phosphine in C. ferrugineus over a six year period (2009–2015), showed a significant reduction in resistant populations after the introduction of SF into the fumigation strategy at problematic storage sites. Overall our research concludes that SF is a good candidate to be used as a ‘resistance breaker’ where phosphine resistance is prevalent.
Resumo:
There is no information on the effect of sulfuryl fluoride (SF) on durum wheat technological properties and products made from fumigated durum wheat. Durum wheat and semolina were exposed to a range of SF applications under conditions that might be typically encountered in bulk storage facilities used in many countries. SF greatly reduced the germination percentage of fumigated durum wheat with increasing impact under higher SF concentration, grain moisture content, and fumigation temperature. SF greatly reduced seed germination percentage impacting more the higher the SF concentration. SF had little to no effects on grain test weight, 1000 grain weight, hardness, protein content, semolina ash content and mixograph properties. At the highest SF concentration (31.25 mg/L for 48 h) there was a tendency for pasta cooking loss to be increased but still acceptable while other pasta properties were largely unaffected. Fumigation with SF did not have any impact on the baking properties of a wholemeal durum flour-commercial flour mix. Therefore, SF is not recommended if the grains are to be used as seeds for agricultural production but for the production of semolina, pasta and bread, SF used under typical fumigation conditions has little to no impact on technological properties of durum wheat.
Resumo:
Next-generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either ‘Landraces’ or ‘Wild and Weedy’ genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP-glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well-characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.
Resumo:
Next-generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either ‘Landraces’ or ‘Wild and Weedy’ genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP-glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well-characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.
Resumo:
There is no information on the effect of sulfuryl fluoride (SF) on durum wheat technological properties and products made from fumigated durum wheat. Durum wheat and semolina were exposed to a range of SF applications under conditions that might be typically encountered in bulk storage facilities used in many countries. SF greatly reduced the germination percentage of fumigated durum wheat, with increasing impact under higher SF concentration, grain moisture content, and fumigation temperature. SF greatly reduced seed germination percentage, impacting more the higher the SF concentration. SF had little to no effect on grain test weight, 1,000-grain weight, hardness, protein content, semolina ash content, and mixograph properties. At the highest SF concentration (31.25 mg/L for 48 h) there was a tendency for pasta cooking loss to be increased but still acceptable, and other pasta properties were largely unaffected. Fumigation with SF did not have any impact on the baking properties of a wholemeal durum flour-commercial flour mix. Therefore, SF is not recommended if the grains are to be used as seeds for agricultural production, but for the production of semolina, pasta, and bread, SF used under typical fumigation conditions has little to no impact on technological properties of durum wheat. © 2016 AACC International, Inc.
Resumo:
With the rising levels of CO2 in the atmosphere, low-emission technologies with carbon dioxide capture and storage (CCS) provide one option for transforming the global energy infrastructure into a more environmentally, climate sustainable system. However, like many technology innovations, there is a social risk to the acceptance of CCS. This article presents the findings of an engagement process using facilitated workshops conducted in two communities in rural Queensland, Australia, where a demonstration project for IGCC with CCS has been announced. The findings demonstrate that workshop participants were concerned about climate change and wanted leadership from government and industry to address the issue. After the workshops, participants reported increased knowledge and more positive attitudes towards CCS, expressing support for the demonstration project to continue in their local area. The process developed is one that could be utilized around the world to successfully engage communities on the low carbon emission technology options.