948 resultados para Glycerol oxidehydration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most commercial recombinant proteins used as molecular biology tools, as well as many academically made preparations, are generally maintained in the presence of high glycerol concentrations after purification to maintain their biological activity. The present study shows that larger proteins containing high concentrations of glycerol are not amenable to analysis using conventional electrospray ionization mass spectrometry (ESI-MS) interfaces. In this investigation the presence of 25% (v/v) glycerol suppressed the signals of Taq DNA polymerase molecules, while 1% (v/v) glycerol suppressed the signal of horse heart myoglobin. The signal suppression was probably caused by the interaction of glycerol molecules with the proteins to create a shielding effect that prevents the ionization of the basic and/or acidic groups in the amino acid side chains. To overcome this difficulty the glycerol concentration was decreased to 5% (v/v) by dialyzing the Taq polymerase solution against water, and the cone voltage in the ESI triple-quadrupole mass spectrometer was set at 80-130 V. This permitted observation of a mass spectrum that contained ions corresponding to protonation of up to 50% of the ionizable basic groups. In the absence of glycerol up to 85% of the basic groups of Taq polymerase became ionized, as observed in the mass spectrum at relatively low cone voltages. An explanation of these and other observations is proposed, based on strong interactions between the protein molecules and glycerol. For purposes of comparison similar experiments were performed on myoglobin, a small protein with 21 basic groups, whose ionization was apparently suppressed in the presence of 1% (v/v) glycerol, since no mass spectrum could be obtained even at high cone voltages. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycerol is widely used as protein stabilizer, in both local and commercial preparations, so it has become necessary to develop methods for mass spectrometric analysis of protein preparations in the presence of glycerol. However, this stabilizing agent may cause signal suppression when present in high concentrations, and is also known to induce protein supercharging even at low concentrations. This work reports the,use of electrospray ionization (ESI) mass spectrometry to characterize glycerol-mediated protein oligomerization. this phenomenon seems to involve the formation of strong non-covalent interactions between protein and glycerol involving close contact between the monomers, leading to formation of protein oligomers adducted with glycerol molecules under the characteristic analytical conditions of the ESI interface. At high orders of oligomerization a lower number of glycerol molecules is required to maintain the high oligomeric states than for the dimers and trimers, and it is possible that for the higher oligomers the monomers become so close to one another that non-covalent bonds between the side chains of the amino acid residues in the proteins may be established. Copyright (C) 2005 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petroleum is the main energy source utilized in the world, but its availability is limited and the search for new renewable energy sources is of major interest. Biofuels, such as ethanol and biodiesel, are among the most promising sources for the substitution of fossil fuels. Biodiesel can replace petroleum diesel, as it is produced from animal fats and vegetable oils, which generate about 10% (w/w) glycerol as the main by-product. The excess glycerol generated may become an environmental problem. since it cannot be disposed of in the environment. One of the possible applications is its use as carbon and energy source for microbial growth in industrial microbiology. Glycerol bioconversion in valuable chemicals, such as 1,3-propanediol, dihydroxyacetone, ethanol, succinate etc. is discussed in this review article. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amino acids are well metabolized by Streptomyces clavuligerus during the production of clavulanic acid using glycerol as main carbon and energy source. However, only a few amino acids such as arginine and ornithine are favorable for CA biosynthesis. The aim of this work was to optimize the glycerol:ornithine molar ratio in the feed medium containing only these compounds to maximize CA production in continuous cultivation. A minimum number of experiments were performed by means of a simple two-level full-factorial central composite design to investigate the combined effect of glycerol and ornithine feeding on the CA concentration during the intermittent and continuous process in shake-flasks. Statistical analysis of the experimental data using the response surface methodology showed that a glycerol-to-ornithine molar ratio of approximately 40:1 in the feed medium resulted in the highest CA concentration when fermentation was stopped. Under these optimized conditions, in bench-scale fermentor runs, the CA concentration reached more than double the concentration obtained in shake-flasks runs. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on dynamic rheological measurements, sucrose, glycerol and magnesium chloride (MgCl2) prevented egg yolk gelation at concentrations of 2% and higher, These additives showed improved cryoprotectant effects as their concentrations were increased, Sodium chloride (NaCl) at higher than 2% also prevented gelation but at 10%, it caused a considerable increase in viscosity of unfrozen yolk, Calcium chloride (CaCl2) showed an opposite effect, promoting protein coagulation before freezing, Samples with 2% CaCl2 gelled completely after 36h at -24 degrees C, Before freezing, potassium chloride (KCl) in the range 2-10% had an effect similar to that of NaCl, However, after freezing its effect changed, Yolk with 2% KCl, frozen 36h at -24 degrees C, showed very elastic behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study describes a methodology of dosage of glycerol kinase (GK) from baker's yeast. The standardization of the activity of the glycerol kinase from baker's yeast was accomplished using the diluted enzymatic preparation containing glycerol phosphate oxidase (GPO) and glycerol kinase. The mixture was incubated at 60 degrees C by 15 min and the reaction was stopped by the SDS solution addition. A first set of experiments was carried out in order to investigate the individual effect of temperature (7), pH and substrate concentration (S), on GK activity and stability. The pH and temperature stability tests showed that the enzyme presented a high stability to pH 6.0-8.0 and the thermal stability were completely maintained up to 50 degrees C during 1 h. The K(m) of the enzyme for glycerol was calculated to be 2 mM and V(max) to be 1.15 U/mL. In addition, modeling and optimization of reaction conditions was attempted by response surface methodology (RSM). Higher activity values will be attained at temperatures between 52 and 56 degrees C, pH around 10.2-10.5 and substrate concentrations from 150 to 170 mM.This low cost method for glycerol kinase dosage in a sequence of reactions is of great importance for many industries, like food, sugar and alcohol. RSM showed to be an adequate approach for modeling the reaction and optimization of reaction conditions to maximize glycerol kinase activity. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seventy-two male albino rats received autogenous transplants of glycerol-preserved rib cartilage into the malar process. The animals were divided into two groups which received preserved cartilage with or without perichondrium. The implants were well tolerated and removal of the perichondrium enhanced the rate of resorption and bone replacement of the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study was made of two methods of cartilage preservation, 98% glycerol and 70% alcohol. Rib cartilage was treated by either of these methods and transplanted into the malar process of rats. Cartilage grafts preserved by both methods were equally well tolerated. Resorption and bone substitution were similar in both groups after 120 days, although resorption was greater for the alcohol-preserved cartilage up until day 30. The possible reduction in antigenicity by the 98% glycerol did not produce any difference of behavior from the cartilage preserved in 70% alcohol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six or 7-day-old equine embryos were divided into 4 groups; Group 1, n = 15, Day 7 embryos destined for immediate transfer; Group 2, n = 15, Day 6 embryos destined for deep-freezing with glycerol plus sucrose as cryoprotectant; Group 3, n = 10, Day 6 embryos destined for deep-freezing with glycerol plus 1,2-propanediol as cryoprotectant and Group 4, n = 3, fresh embryos destined for ultrastructural analysis. All the frozen/thawed embryos were transferred to recipient mares, except 3 embryos in Group 3 that were subjected to ultrastructural analysis. After thawing the cryoprotectants were removed by successive dilutions in PBS + 15% v:v fetal calf serum (FCS) containing decreasing concentrations of the cryoprotectants. Pregnancy was diagnosed ultrasonographically in 53.3%, 13.3% and 0% of the mares in Groups 1, 2 and 3 respectively. Ultrastructural analysis showed differences between frozen/thawed and fresh embryos. In the former, embryonic cells were deformed and showed dilation of the intercellular and perivitelline spaces, a decrease of desmosome number in the junctional complexes, few microvilli on the apical surface of the trophectoderm and an almost total absence of pinocytotic vesicles. Most of the mitochondria showed regions containing dilation and irregularities on the cristae, which appeared electron-dense. The results obtained with Groups 2 and 3 embryos showed that the cryoprotectants employed were not effective in protecting the embryos against damage during freezing and thawing. Indeed, the ultrastructural changes observed in the Group 3 embryos explained the absence of any established pregnancies in this group of mares.