879 resultados para Glutathione Synthetase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Genetic studies have shown an association between schizophrenia and a GAG trinucleotide repeat (TNR) polymorphism in the catalytic subunit (GCLC) of the glutamate cysteine ligase (GCL), the key enzyme for glutathione (GSH) synthesis. The present study was aimed at analyzing the influence of a GSH dysregulation of genetic origin on plasma thiols (total cysteine, homocysteine, and cysteine-glycine) and other free amino acid levels as well as fibroblast cultures GSH levels. Plasma thiols levels were also compared between patients and controls. As compared with patients with a low-risk GCLC GAG TNR genotype, patients with a high-risk genotype, having an impaired GSH synthesis, displayed a decrease of fibroblast GSH and plasma total cysteine levels, and an increase of the oxidized form of cysteine (cystine) content. Increased levels of plasma free serine, glutamine, citrulline, and arginine were also observed in the high-risk genotype. Taken together, the high-risk genotypes were associated with a subgroup of schizophrenia characterized by altered plasma thiols and free amino acid levels that reflect a dysregulation of redox control and an increased susceptibility to oxidative stress. This altered pattern potentially contributes to the development of a biomarker profile useful for early diagnosis and monitoring the effectiveness of novel drugs targeting redox dysregulation in schizophrenia. Antioxid. Redox Signal. 15, 2003-2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Glutathione (GSH) dysregulation at the gene, protein and functional levels observed in schizophrenia patients, and schizophrenia-like anomalies in GSH deficit experimental models, suggest that genetic glutathione synthesis impairments represent one major risk factor for the disease (Do et al., 2009). In a randomized, double blind, placebo controlled, add-on clinical trial of 140 patients, the GSH precursor N-Acetyl-Cysteine (NAC, 2g/day, 6 months) significantly improved the negative symptoms and reduced sideeffects due to antipsychotics (Berk et al., 2008). In a subset of patients (n=7), NAC (2g/day, 2 months, cross-over design) also improved auditory evoked potentials, the NMDA-dependent mismatch negativity (Lavoie et al, 2008). Methods: To determine whether increased GSH levels would modulate the topography of functional brain connectivity, we applied a multivariate phase synchronization (MPS) estimator (Knyazeva et al, 2008) to dense-array EEGs recorded during rest with eyes closed at the protocol onset, the point of crossover, and at its end. Results: The whole-head imaging revealed a specific synchronization landscape in NAC compared to placebo condition. In particular, NAC increased MPS over frontal and left temporal regions in a frequency-specific manner. The topography and direction of MPS changes were similar and robust in all 7 patients. Moreover, these changes correlated with the changes in the Liddle's score of disorganization, thus linking EEG synchronization to the improvement of the clinical picture. Conclusions: The data suggest an important pathway towards new therapeutic strategies that target GSH dysregulation in schizophrenia. They also show the utility of MPS mapping as a marker of treatment efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Acetate metabolism in skeletal muscle is regulated by acetylCoA synthetase (ACS). The main function of ACS is to provide cells with acetylCoA, a key molecule for numerous metabolic pathways including fatty acid and cholesterol synthesis and the Krebs cycle. METHODS: Hyperpolarized [1-(13)C]acetate prepared via dissolution dynamic nuclear polarization was injected intravenously at different concentrations into rats. The (13)C magnetic resonance signals of [1-(13)C]acetate and [1-(13)C]acetylcarnitine were recorded in vivo for 1min. The kinetic rate constants related to the transformation of acetate into acetylcarnitine were deduced from the 3s time resolution measurements using two approaches, either mathematical modeling or relative metabolite ratios. RESULTS: Although separated by two biochemical transformations, a kinetic analysis of the (13)C label flow from [1-(13)C]acetate to [1-(13)C]acetylcarnitine led to a unique determination of the activity of ACS. The in vivo Michaelis constants for ACS were KM=0.35±0.13mM and Vmax=0.199±0.031μmol/g/min. CONCLUSIONS: The conversion rates from hyperpolarized acetate into acetylcarnitine were quantified in vivo and, although separated by two enzymatic reactions, these rates uniquely defined the activity of ACS. The conversion rates associated with ACS were obtained using two analytical approaches, both methods yielding similar results. GENERAL SIGNIFICANCE: This study demonstrates the feasibility of directly measuring ACS activity in vivo and, since the activity of ACS can be affected by various pathological states such as cancer or diabetes, the proposed method could be used to non-invasively probe metabolic signatures of ACS in diseased tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies showed a fetal sheep liver extract (FSLE), in association with monophosphoryl lipid A, MPLA (a bioactive component of lipid A of LPS), could interact to induce the development of dendritic cells (DCs) which regulated production of Foxp3+ Treg. This interaction was associated with an altered gene expression both of distinct subsets of TLRs and of CD200Rs. Prior studies had suggested that major interacting components within FSLE were gamma-chain of fetal hemoglobin (Hgbgamma) and glutathione (GSH). We investigated whether differentiation/maturation of DCs in vitro in the presence of either GM-CSF or Flt3L to produce preferentially either immunogenic or tolerogenic DCs was itself controlled by an interaction between MPLA, GSH and Hgbgamma. At low (approximately 10 microg/ml) Hgbgamma concentrations, DCs developing in culture with GSH and MPLA produced optimal stimulation of allogeneic CTL cell responses in vitro (and enhanced skin graft rejection in vivo). At higher concentrations (>40 microg/ml Hgbgamma) and equivalent concentrations of MPLA and GSH, the DCs induce populations of Treg which can suppress the induction of allogeneic CTL and graft rejection in vivo. These different populations of DCs express different patterns of mRNAs for the CD200R family. Addition of anti-TLR or anti-MD-1 mAbs to DCs developing in this mixture (Hgbgamma+GSH+MPLA), suggests that one effect of (GSH+Hgbgamma) on MPLA stimulation may involve altered signaling through TLR4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Converging evidence speak in favor of an abnormal susceptibility to oxidative stress in schizophrenia. A decreased level of glutathione (GSH), the principal non-protein antioxidant and redox regulator, was observed both in cerebrospinal-fluid and prefrontal cortex of schizophrenia patients (Do et al., 2000). Results: Schizophrenia patients have an abnormal GSH synthesis most likely of genetic origin: Two independent case-control studies showed a significant association between schizophrenia and a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease-associated genotypes correlated with a decrease in GCLC protein expression, GCL activity and GSH content. Such a redox dysregulation during development could underlie the structural and functional anomalies in connectivity: In experimental models, GSH deficit induced anomalies similar to those observed in patients. (a) morphology: In animal models with GSH deficit during the development we observed in prefrontal cortex a decreased dendritic spines density in pyramidal cells and an abnormal development of parvalbumine (but not of calretinine) immunoreactive GABA interneurones in anterior cingulate cortex. (b) physiology: GSH depletion in hippocampal slices induces NMDA receptors hypofunction and an impairment of long term potentiation. In addition, GSH deficit affected the modulation of dopamine on NMDA-induced Ca 2+ response in cultured cortical neurons. While dopamine enhanced NMDA responses in control neurons, it depressed NMDA responses in GSH-depleted neurons. Antagonist of D2-, but not D1-receptors, prevented this depression, a mechanism contributing to the efficacy of antipsychotics. The redox sensitive ryanodine receptors and L-type calcium channels underlie these observations. (c) cognition: Developing rats with low [GSH] and high dopamine lead deficit in olfactory integration and in object recognition which appears earlier in males that females, in analogy to the delay of the psychosis onset between man and woman. Conclusion: These clinical and experimental evidence, combined with the favorable outcome of a clinical trial with N-Acetyl Cysteine, a GSH precursor, on both the negative symptoms (Berk et al., submitted) and the mismatch negativity in an auditory oddball paradigm supported the proposal that a GSH synthesis impairment of genetic origin represent, among other factors, one major risk factor in schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In schizophrenia patients, glutathione dysregulation at the gene, protein and functional levels, leads to N-methyl-D-aspartate (NMDA) receptor hypofunction. These patients also exhibit deficits in auditory sensory processing that manifests as impaired mismatch negativity (MMN), which is an auditory evoked potential (AEP) component related to NMDA receptor function. N-acetyl-cysteine (NAC), a glutathione precursor, was administered to patients to determine whether increased levels of brain glutathione would improve MMN and by extension NMDA function. A randomized, double-blind, cross-over protocol was conducted, entailing the administration of NAC (2 g/day) for 60 days and then placebo for another 60 days (or vice versa). 128-channel AEPs were recorded during a frequency oddball discrimination task at protocol onset, at the point of cross-over, and at the end of the study. At the onset of the protocol, the MMN of patients was significantly impaired compared to sex- and age- matched healthy controls (p=0.003), without any evidence of concomitant P300 component deficits. Treatment with NAC significantly improved MMN generation compared with placebo (p=0.025) without any measurable effects on the P300 component. MMN improvement was observed in the absence of robust changes in assessments of clinical severity, though the latter was observed in a larger and more prolonged clinical study. This pattern suggests that MMN enhancement may precede changes to indices of clinical severity, highlighting the possible utility AEPs as a biomarker of treatment efficacy. The improvement of this functional marker may indicate an important pathway towards new therapeutic strategies that target glutathione dysregulation in schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurodegenerative and psychiatric disorders including Alzheimer's, Parkinson's or Huntington's diseases and schizophrenia have been associated with a deficit in glutathione (GSH). In particular, a polymorphism in the gene of glutamate cysteine ligase modulatory subunit (GCLM) is associated with schizophrenia. GSH is the most important intracellular antioxidant and is necessary for the removal of reactive by-products generated by the utilization of glucose for energy supply. Furthermore, glucose metabolism through the pentose phosphate pathway is a major source of NADPH, the cofactor necessary for the regeneration of reduced glutathione. This study aims at investigating glucose metabolism in cultured astrocytes from GCLM knockout mice, which show decreased GSH levels. No difference in the basal metabolism of glucose was observed between wild-type and knockout cells. In contrast, glycogen levels were lower and its turnover was higher in knockout astrocytes. These changes were accompanied by a decrease in the expression of the genes involved in its synthesis and degradation, including the protein targeting to glycogen. During an oxidative challenge induced by tert-Butylhydroperoxide, wild-type cells increased their glycogen mobilization and glucose uptake. However, knockout astrocytes were unable to mobilize glycogen following the same stress and they could increase their glucose utilization only following a major oxidative insult. Altogether, these results show that glucose metabolism and glycogen utilization are dysregulated in astrocytes showing a chronic deficit in GSH, suggesting that alterations of a fundamental aspect of brain energy metabolism is caused by GSH deficit and may therefore be relevant to metabolic dysfunctions observed in schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate the expression of many genes involved in lipid metabolism. The biological roles of PPARalpha and PPARgamma are relatively well understood, but little is known about the function of PPARbeta. To address this question, and because PPARbeta is expressed to a high level in the developing brain, we used reaggregated brain cell cultures prepared from dissociated fetal rat telencephalon as experimental model. In these primary cultures, the fetal cells initially form random aggregates, which progressively acquire a tissue-specific pattern resembling that of the brain. PPARs are differentially expressed in these aggregates, with PPARbeta being the prevalent isotype. PPARalpha is present at a very low level, and PPARgamma is absent. Cell type-specific expression analyses revealed that PPARbeta is ubiquitous and most abundant in some neurons, whereas PPARalpha is predominantly astrocytic. We chose acyl-CoA synthetases (ACSs) 1, 2, and 3 as potential target genes of PPARbeta and first analyzed their temporal and cell type-specific pattern. This analysis indicated that ACS2 and PPARbeta mRNAs have overlapping expression patterns, thus designating the ACS2 gene as a putative target of PPARbeta. Using a selective PPARbeta activator, we found that the ACS2 gene is transcriptionally regulated by PPARbeta, demonstrating a role for PPARbeta in brain lipid metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schizophrenia is a complex multifactorial brain disorder with a genetic component. Convergent evidence has implicated oxidative stress and glutathione (GSH) deficits in the pathogenesis of this disease. The aim of the present study was to test whether schizophrenia is associated with a deficit of GSH synthesis. Cultured skin fibroblasts from schizophrenia patients and control subjects were challenged with oxidative stress, and parameters of the rate-limiting enzyme for the GSH synthesis, the glutamate cysteine ligase (GCL), were measured. Stressed cells of patients had a 26% (P = 0.002) decreased GCL activity as compared with controls. This reduction correlated with a 29% (P < 0.001) decreased protein expression of the catalytic GCL subunit (GCLC). Genetic analysis of a trinucleotide repeat (TNR) polymorphism in the GCLC gene showed a significant association with schizophrenia in two independent case-control studies. The most common TNR genotype 7/7 was more frequent in controls [odds ratio (OR) = 0.6, P = 0.003], whereas the rarest TNR genotype 8/8 was three times more frequent in patients (OR = 3.0, P = 0.007). Moreover, subjects with disease-associated genotypes had lower GCLC protein expression (P = 0.017), GCL activity (P = 0.037), and GSH contents (P = 0.004) than subjects with genotypes that were more frequent in controls. Taken together, the study provides genetic and functional evidence that an impaired capacity to synthesize GSH under conditions of oxidative stress is a vulnerability factor for schizophrenia.