957 resultados para Global Positioning System (GPS)
Resumo:
In the frame of the transnational ALPS-GPSQUAKENET project, a component of the Alpine Space Programme of the European Community Initiative Programme (CIP) INTERREG III B, the Deutsches Geodätisches Forschungsinstitut (DGFI) in Munich, Germany, installed in 2005 five continuously operating permanent GPS stations located along the northern Alps boundary in Bavaria. The main objective of the ALPS-GPSQUAKENET project was to build-up a high-performance transnational space geodetic network of Global Positioning System (GPS) receivers in the Alpine region (the so-called Geodetic Alpine Integrated Network, GAIN). Data from this network allows for studying crustal deformations in near real-time to monitor Earthquake hazard and improve natural disaster prevention. The five GPS stations operatied by DGFI are mounted on concrete pillars attached to solid rock. The names of the stations are (from west to east) Hochgrat (HGRA), Breitenberg (BREI), Fahrenberg (FAHR), Hochries (HRIE) and Wartsteinkopf (WART). The provided data series start from October 7, 2005. Data are stored with a temporal spacing of 15 seconds in daily RINEX files.
Resumo:
Ten GPS-Met stations were installed in northwest Mexico from June - September 2013. Each station included a Trimble NetR9 GPS receiver for PWV and a Vaisala WXT520 surface meteorological package measuring wind speed and direction, air temperature, humidity, pressure and precipitation. The geographic location, elevation and data period for each station are provided in Serra et al. (2016). The GPS receiver at Rayon failed on July 16, 21 days after installation, thus these data are not included in the archive but are available upon request (yserra@uw.edu). Data include 1-min surface meteorological variables, while the GPS PWV is calculated at 5-min intervals. A full description of the experiment can be found in Serra et al., 2016: Bull. Am. Meteor. Soc., doi: 10.1175/BAMS-D-14-00250.1.
Resumo:
Augmented Reality (AR) applications often require knowledge of the user’s position in some global coordinate system in order to draw the augmented content to its correct position on the screen. The most common method for coarse positioning is the Global Positioning System (GPS). One of the advantages of GPS is that GPS receivers can be found in almost every modern mobile device. This research was conducted in order to determine the accuracies of different GPS receivers. The tests included seven consumer-grade tablets, three external GPS modules and one professional-grade GPS receiver. All of the devices were tested with both static and mobile measurements. It was concluded that even the cheaper external GPS receivers were notably more accurate than the GPS receivers of the tested tablets. The absolute accuracy of the tablets is difficult to determine from the test results, since the results vary by a large margin between different measurements. The accuracy of the tested tablets in static measurements were between 0.30 meters and 13.75 meters.
Resumo:
The surface of the Earth is subjected to vertical deformations caused by geophysical and geological processes which can be monitored by Global Positioning System (GPS) observations. The purpose of this work is to investigate GPS height time series to identify interannual signals affecting the Earth’s surface over the European and Mediterranean area, during the period 2001-2019. Thirty-six homogeneously distributed GPS stations were selected from the online dataset made available by the Nevada Geodetic Laboratory (NGL) on the basis of the length and quality of the data series. The Principal Component Analysis (PCA) is the technique applied to extract the main patterns of the space and time variability of the GPS Up coordinate. The time series were studied by means of a frequency analysis using a periodogram and the real-valued Morlet wavelet. The periodogram is used to identify the dominant frequencies and the spectral density of the investigated signals; the second one is applied to identify the signals in the time domain and the relevant periodicities. This study has identified, over European and Mediterranean area, the presence of interannual non-linear signals with a period of 2-to-4 years, possibly related to atmospheric and hydrological loading displacements and to climate phenomena, such as El Niño Southern Oscillation (ENSO). A clear signal with a period of about six years is present in the vertical component of the GPS time series, likely explainable by the gravitational coupling between the Earth’s mantle and the inner core. Moreover, signals with a period in the order of 8-9 years, might be explained by mantle-inner core gravity coupling and the cycle of the lunar perigee, and a signal of 18.6 years, likely associated to lunar nodal cycle, were identified through the wavelet spectrum. However, these last two signals need further confirmation because the present length of the GPS time series is still too short when compared to the periods involved.
Resumo:
As part of ACIAR project ASEM/2003/052, Improving Financial Returns to Smallholder Tree Farmers in the Philippines, plantations of timber trees in Leyte Island, the Philippines were located using a systematic survey of the island. The survey was undertaken in order to compile a database of plantations which could be used to guide the planning of project activities. In addition to recording a range of qualitative and quantitative information for each plantation, the survey spatially referenced each site using a Global Positioning System (GPS) to electronic maps of the island which were held in a Geographical Information System (GIS). Microsoft Excel and Mapsource® software were used as the software links between GPS coordinates and the GIS. Mapping of farm positions was complicated by different datums being used for maps of Leyte Island and this caused GPS positions to be displaced from equivalent positions on the map. Photos of the sites were hyperlinked to their map positions in the GIS in order to assist staff to recall site characteristics.
Resumo:
Trabalho de Projeto realizado para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
Projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
The accuracy of the Navigation Satellite Timing and Ranging (NAVSTAR) Global Positioning System (GPS) measurements is insufficient for many outdoor navigation tasks. As a result, in the late nineties, a new methodology – the Differential GPS (DGPS) – was developed. The differential approach is based on the calculation and dissemination of the range errors of the GPS satellites received. GPS/DGPS receivers correlate the broadcasted GPS data with the DGPS corrections, granting users increased accuracy. DGPS data can be disseminated using terrestrial radio beacons, satellites and, more recently, the Internet. Our goal is to provide mobile platforms within our campus with DGPS data for precise outdoor navigation. To achieve this objective, we designed and implemented a three-tier client/server distributed system that establishes Internet links with remote DGPS sources and performs campus-wide dissemination of the obtained data. The Internet links are established between data servers connected to remote DGPS sources and the client, which is the data input module of the campus-wide DGPS data provider. The campus DGPS data provider allows the establishment of both Intranet and wireless links within the campus. This distributed system is expected to provide adequate support for accurate (submetric) outdoor navigation tasks.
Resumo:
Although the Navigation Satellite Timing and Ranging (NAVSTAR) Global Positioning System (GPS) is, de facto, the standard positioning system used in outdoor navigation, it does not provide, per se, all the features required to perform many outdoor navigational tasks. The accuracy of the GPS measurements is the most critical issue. The quest for higher position readings accuracy led to the development, in the late nineties, of the Differential Global Positioning System (DGPS). The differential GPS method detects the range errors of the GPS satellites received and broadcasts them. The DGPS/GPS receivers correlate the DGPS data with the GPS satellite data they are receiving, granting users increased accuracy. DGPS data is broadcasted using terrestrial radio beacons, satellites and, more recently, the Internet. Our goal is to have access, within the ISEP campus, to DGPS correction data. To achieve this objective we designed and implemented a distributed system composed of two main modules which are interconnected: a distributed application responsible for the establishment of the data link over the Internet between the remote DGPS stations and the campus, and the campus-wide DGPS data server application. The DGPS data Internet link is provided by a two-tier client/server distributed application where the server-side is connected to the DGPS station and the client-side is located at the campus. The second unit, the campus DGPS data server application, diffuses DGPS data received at the campus via the Intranet and via a wireless data link. The wireless broadcast is intended for DGPS/GPS portable receivers equipped with an air interface and the Intranet link is provided for DGPS/GPS receivers with just a RS232 DGPS data interface. While the DGPS data Internet link servers receive the DGPS data from the DGPS base stations and forward it to the DGPS data Internet link client, the DGPS data Internet link client outputs the received DGPS data to the campus DGPS data server application. The distributed system is expected to provide adequate support for accurate (sub-metric) outdoor campus navigation tasks. This paper describes in detail the overall distributed application.
Resumo:
Trabalho final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Over the last fifty years mobility practices have changed dramatically, improving the way travel takes place, the time it takes but also on matters like road safety and prevention. High mortality caused by high accident levels has reached untenable levels. But the research into road mortality stayed limited to comparative statistical exercises which go no further than defining accident types. In terms of sharing information and mapping accidents, little progress has been mad, aside from the normal publication of figures, either through simplistic tables or web pages. With considerable technological advances on geographical information technologies, research and development stayed rather static with only a few good examples on dynamic mapping. The use of Global Positioning System (GPS) devices as normal equipments on automobile industry resulted in a more dynamic mobility patterns but also with higher degrees of uncertainty on road traffic. This paper describes a road accident georeferencing project for the Lisbon District involving fatalities and serious injuries during 2007. In the initial phase, individual information summaries were compiled giving information on accidents and its majour characteristics, collected by the security forces: the Public Safety Police Force (Polícia de Segurança Pública - PSP) and the National Guard (Guarda Nacional Republicana - GNR). The Google Earth platform was used to georeference the information in order to inform the public and the authorities of the accident locations, the nature of the location, and the causes and consequences of the accidents. This paper also gives future insights about augmented reality technologies, considered crucial to advances to road safety and prevention studies. At the end, this exercise could be considered a success because of numerous consequences, as for stakeholders who decide what to do but also for the public awareness to the problem of road mortality.
Resumo:
Relatório de Estágio apresentado para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Gestão do Território especialização em Detecção Remota e Sistemas de Informação Geográfica
Resumo:
Smart Cities are designed to be living systems and turn urban dwellers life more comfortable and interactive by keeping them aware of what surrounds them, while leaving a greener footprint. The Future Cities Project [1] aims to create infrastructures for research in smart cities including a vehicular network, the BusNet, and an environmental sensor platform, the Urban Sense. Vehicles within the BusNet are equipped with On Board Units (OBUs) that offer free Wi-Fi to passengers and devices near the street. The Urban Sense platform is composed by a set of Data Collection Units (DCUs) that include a set of sensors measuring environmental parameters such as air pollution, meteorology and noise. The Urban Sense platform is expanding and receptive to add new sensors to the platform. The parnership with companies like TNL were made and the need to monitor garbage street containers emerged as air pollution prevention. If refuse collection companies know prior to the refuse collection which route is the best to collect the maximum amount of garbage with the shortest path, they can reduce costs and pollution levels are lower, leaving behind a greener footprint. This dissertation work arises in the need to monitor the garbage street containers and integrate these sensors into an Urban Sense DCU. Due to the remote locations of the garbage street containers, a network extension to the vehicular network had to be created. This dissertation work also focus on the Multi-hop network designed to extend the vehicular network coverage area to the remote garbage street containers. In locations where garbage street containers have access to the vehicular network, Roadside Units (RSUs) or Access Points (APs), the Multi-hop network serves has a redundant path to send the data collected from DCUs to the Urban Sense cloud database. To plan this highly dynamic network, the Wi-Fi Planner Tool was developed. This tool allowed taking measurements on the field that led to an optimized location of the Multi-hop network nodes with the use of radio propagation models. This tool also allowed rendering a temperature-map style overlay for Google Earth [2] application. For the DCU for garbage street containers the parner company provided the access to a HUB (device that communicates with the sensor inside the garbage containers). The Future Cities use the Raspberry pi as a platform for the DCUs. To collect the data from the HUB a RS485 to RS232 converter was used at the physical level and the Modbus protocol at the application level. To determine the location and status of the vehicles whinin the vehicular network a TCP Server was developed. This application was developed for the OBUs providing the vehicle Global Positioning System (GPS) location as well as information of when the vehicle is stopped, moving, on idle or even its slope. To implement the Multi-hop network on the field some scripts were developed such as pingLED and “shark”. These scripts helped upon node deployment on the field as well as to perform all the tests on the network. Two setups were implemented on the field, an urban setup was implemented for a Multi-hop network coverage survey and a sub-urban setup was implemented to test the Multi-hop network routing protocols, Optimized Link State Routing Protocol (OLSR) and Babel.
Resumo:
Positioning technologies are becoming ubiquitous and are being used more and more frequently for supporting a large variety of applica- tions. For outdoor applications, global navigation satellite systems (GNSSs), such as the global positioning system (GPS), are the most common and popular choice because of their wide coverage. GPS is also augmented with network-based systems that exploit existing wireless and mobile networks for providing positioning functions where GPS is not available or to save energy in battery-powered devices. Indoors, GNSSs are not a viable solution, but many applications require very accurate, fast, and exible positioning, tracking, and navigation functions. These and other requirements have stim- ulated research activities, in both industry and academia, where a variety of fundamental principles, techniques, and sensors are being integrated to provide positioning functions to many applications. The large majority of positioning technologies is for indoor environments, and most of the existing commercial products have been developed for use in of ce buildings, airports, shopping malls, factory plants, and similar spaces. There are, however, other spaces where positioning, tracking, and navigation systems play a central role in safety and in rescue operations, as well as in supporting speci c activities or for scienti c research activities in other elds. Among those spaces are underground tunnels, mines, and even underwater wells and caves. This chapter describes the research efforts over the past few years that have been put into the development of positioning systems for underground tun- nels, with particular emphasis in the case of the Large Hadron Collider (LHC) at CERN (the European Organization for Nuclear Research), where localiza- tion aims at enabling more automatic and unmanned radiation surveys. Examples of positioning and localization systems that have been devel- oped in the past few years for underground facilities are presented in the fol- lowing section, together with a brief characterization of those spaces’ special conditions and the requirements of some of the most common applications. Section 5.2 provides a short overview of some of the most representative research efforts that are currently being carried out by many research teams around the world. In addition, some of the fundamental principles and tech- niques are identi ed, such as the use of leaky coaxial cables, as used at the LHC. In Section 5.3, we introduce the speci c environment of the LHC and de ne the positioning requirements for the envisaged application. This is followed by a detailed description of our approach and the results that have been achieved so far. Some last comments and remarks are presented in a nal section.
Resumo:
Acute cases of schistosomiasis have been found on the coastal area of Pernambuco, Brazil, due to environmental disturbances and disorderly occupation of the urban areas. This study identifies and spatially marks the main foci of the snail host species, Biomphalaria glabrata on Itamaracá Island. The chaotic occupation of the beach resorts has favoured the emergence of transmission foci, thus exposing residents and tourists to the risk of infection. A database covering five years of epidemiological investigation on snails infected by Schistosoma mansoni in the island was produced with information from the geographic positioning of the foci, number of snails collected, number of snails tested positive, and their infection rate. The spatial position of the foci were recorded through the Global Positioning System (GPS), and the geographical coordinates were imported by AutoCad. The software packages ArcView and Spring were used for data processing and spatial analysis. AutoCad 2000 was used to plot the pairs of coordinates obtained from GPS. Between 1998 and 2002 5009 snails, of which 12.2% were positive for S. mansoni, were collected in Forte Beach. A total of 27 foci and areas of environmental risk were identified and spatially analyzed allowing the identification of the areas exposed to varying degrees of risk.