104 resultados para Gigantea
Resumo:
The argillite sequence located at the base of the sedimentary cover on the continental slope of the Sea of Japan was studied by petrographic, palynological, and X-ray diffraction methods. Two spores-pollen complexes were distinguished in it: the Late Oligocene reflecting cooling and the Early Miocene corresponding to initiated warming. Data obtained indicate that the sequence is composed of terrigenous silty-clayey sediments that accumulated in shallow coastal-marine settings. The global sea-level rise at the Early-Middle Miocene transition, combined with regional tectonic processes, determined basin's deepening, owing to which the argillite sequence was overlain by a thick layer of Middle Miocene diatomaceous-clayey sediments. Due to tectonic movement along existing faults in the terminal Late Miocene, the argillite sequence occurring initially at depths of at least 400-500 m was locally exhumed to the basin bottom.
Resumo:
Tropical planktonic foraminifers occur throughout the sequences at all sites of Leg 85, and the standard planktonic foraminiferal zonation of Blow (1969) is applicable to most of the recovered sequences. However, the abundance and state of preservation of foraminifers decline markedly in certain intervals because of the effects of dissolution. Although siliceous microfossils studied on this leg indicate recovery of nearly complete records for the Pleistocene to Oligocene interval, the planktonic foraminiferal biostratigraphy is interrupted by strongly dissolved sections at all sites. Particularly, faunas assignable to Zone N7 (early Miocene) and Zone N15-16 (early late Miocene) are almost totally unrecognizable throughout the eastern equatorial Pacific. Well-preserved and diverse planktonic foraminifers occur in the lower middle Miocene, where the evolutionary developments of Orbulina universa d'Orbigny and Globorotalia fohsi Cushman and Ellisor are well represented. The Orbulina first appearance datum is observed to be nearly coincident with the last occurrence level of the diatom Annellus californicus Tempère, thus .establishing an age of 15 Ma for this datum by using the paleomagnetic calibration of the diatom datum. Moderately well-preserved late Eocene planktonic foraminifers occur in the carbonate sediments immediately overlying the basalt basement at Sites 573 and 574. The Eocene-Oligocene faunal transition, however, is masked at both sites by an intercalation of metalliferous layers containing no planktonic foraminifers.
Resumo:
Abyssal agglutinated foraminifers allow biostratigraphic correlation of Upper Cretaceous brown zeolitic claystones in Deep Sea Drilling Project Holes 196A and 198A and Ocean Drilling Program Holes 800A and 801 A. Three agglutinated foraminiferal zones subdivide the strata overlying the Campanian to Cenomanian cherts. The lower zone is characterized by Hormosina gigantea, which is a Campanian zonal marker in the North Atlantic Ocean and western Tethys. A major correlation level, which was observed in all holes studied, is based on the acme of evolute Haplophragmoides spp. This acme zone was observed in Sample 129-801A-6R-CC, about 9 m above the first occurrence of H. gigantea in Sample 129-801A-7R-1, 62-67 cm (approximately middle Campanian). The uppermost zone is characterized by dominant Paratrochamminoides spp. and in some instances common Bolivinopsis parvissimus (late Campanian to Maestrichtian). The available biostratigraphic data for the Upper Cretaceous of Sites 196, 198, 800, and 801 are correlated with the biochronologic framework of the North Atlantic, western Mediterranean, and Carpathians. Additionally, we use quantitative estimates of the diversity and abundance of agglutinated foraminiferal species to monitor general faunal trends with time in the western Pacific.