999 resultados para Geotechnical material
Resumo:
Background Recently, there has been an increase in the incidence of cutaneous leishmaniasis (CL), which represents an important health problem. This increase may be related to the epidemiologic expansion of the infective agent and the increase in tourism in tropical areas. The difficulty in clinical diagnosis, mainly in areas in which CL is not the first consideration of local physicians, has intensified efforts to describe diagnostic tests, which should be specific, sensitive, and practical. Amongst the new tests described are those including nucleic acid amplification (polymerase chain reaction, PCR) and immunohistochemistry (IHC). Methods In this study, we evaluated the sensitivity of a PCR based on small subunit (SSU) ribosomal DNA, in comparison with IHC using Leishmania spp. antibodies, in biopsies embedded in paraffin. Result The results indicated a total sensitivity of 96% (90.9% with PCR and 68.8% with IHC), showing the possibility of using paraffin-embedded biopsies to diagnose CL. Conclusion We propose the use of the two tests together as a routine protocol for diagnosis. This would require the provision of local medical services to perform molecular biology techniques and adequate Leishmania antibodies.
Resumo:
Introduction: This ex vivo study evaluated the heat release, time required, and cleaning efficacy of MTwo (VDW, Munich, Germany) and ProTaper Universal Retreatment systems (Dentsply/Maillefer, Ballaigues, Switzerland) and hand instrumentation in the removal of filling material. Methods: Sixty single-rooted human teeth with a single straight canal were obturated with gutta-percha and zinc oxide and eugenol-based cement and randomly allocated to 3 groups (n = 20). After 30-day storage at 37 degrees C and 100% humidity, the root fillings were removed using ProTaper UR, MTwo R, or hand files. Heat release, time required, and cleaning efficacy data were analyzed statistically (analysis of variance and the Tukey test, alpha = 0.05). Results: None of the techniques removed the root fillings completely. Filling material removal with ProTaper UR was faster but caused more heat release. Mtwo R produced less heat release than the other techniques but was the least efficient in removing gutta-percha/sealer. Conclusions: ProTaper UR and MTwo R caused the greatest and lowest temperature increase on root surface, respectively; regardless of the type of instrument, more heat was released in the cervical third. Pro Taper UR needed less time to remove fillings than MTwo R. All techniques left filling debris in the root canals. (I Endod 2010;36:1870-1873)
Resumo:
A 62-year-old man was referred for routine treatment of hyperplasia of the mucosa in the anterior lower jaw. An oroantral fistula was detected in the right superior alveolar ridge. The patient had no complaints. Plain radiographs showed a radiopaque foreign body in the posterior region associated with opacification of the maxillary sinus. Computed tomography showed the same hyperdense foreign body located in the posterior lower part of the sinus and an abnormal soft tissue mass in the entire right maxillary sinus. When asked about sinusitis, the patient mentioned occasional episodes of pus taste and intermittent crises of headache lasting for one week. The patient has been edentulous for 20 years. Sinus debridement was performed and the oroantral fistula was closed. The clinical suspicion of the presence of zinc oxide-eugenol paste was confirmed by microscopical and chemical analysis. After 6 months of follow-up, the fistula continued to be closed and sinusitis did not recur. This clinical case of maxillary chronic sinusitis illustrates a different odontogenic origin.
Resumo:
Matrix spalling or crushing is one of the important mechanisms of fiber-matrix interaction of fiber reinforced cementitious composites (FRCC). The fiber pullout mechanisms have been extensively studied for an aligned fiber but matrix failure is rarely investigated since it is thought not to be a major affect. However, for an inclined fiber, the matrix failure should not be neglected. Due to the complex process of matrix spalling, experimental investigation and analytical study of this mechanism are rarely found in literature. In this paper, it is assumed that the load transfer is concentrated within the short length of the inclined fiber from the exit point towards anchored end and follows the exponential law. The Mindlin formulation is employed to calculate the 3D stress field. The simulation gives much information about this field. The 3D approximation of the stress state around an inclined fiber helps to qualitatively understand the mechanism of matrix failure. Finally, a spalling criterion is proposed by which matrix spalling occurs only when the stress in a certain volume, rather than the stress at a small point, exceeds the material strength. This implies some local stress redistribution after first yield. The stress redistribution results in more energy input and higher load bearing capacity of the matrix. In accordance with this hypothesis, the evolution of matrix spalling is demonstrated. The accurate prediction of matrix spalling needs the careful determination of the parameters in this model. This is the work of further study. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Objective: To investigate the impact characteristics of an ethylene vinyl acetate (EVA) mouthguard material with regulated air inclusions, which included various air cell volumes and wall thickness between air cells. In particular, the aim was to identify the magnitude and direction of forces within the impacts. Method: EVA mouthguard material, A mm thick and with and without air inclusions, was impacted with a constant force impact pendulum with an energy of 4.4 J and a velocity of 3 m/s. Transmitted forces through the EVA material were measured using an accelerometer, which also allowed the determination of force direction and magnitude within the impacts. Results: Statistically significant reductions in the transmitted forces were observed with all the air inclusion materials when compared with EVA without air inclusions. Maximum transmitted force through one air inclusion material was reduced by 32%. Force rebound was eliminated in one material, and reduced second force impulses were observed in all the air inclusion materials. Conclusion: The regulated air inclusions improved the impact characteristics of the EVA mouthguard material, the material most commonly used in mouthguards world wide.
Effect of ethylene vinyl acetate (EVA) closed cell foam on transmitted forces in mouthguard material
Resumo:
Objectives: To compare transmitted forces through ethylene vinyl acetate (EVA) mouthguard material and the same EVA material with gas inclusions in the form of a closed cell foam. Method: EVA mouthguard materials with and without foam gas inclusions and 4 mm thick were impacted with a constant force from an impact pendulum. Various porosity levels in the foam materials were produced by 1%, 5%, and 10% by weight foaming agent. The forces transmitted through the EVA after energy absorption by the test materials were measured with a force sensor and compared. Results: Only minor non-significant differences in transmitted forces through the EVA with and without foam were shown. Conclusions: The inclusion of gas in the form of a closed cell foam in 4 mm thick EVA mouthguard materials did not improve the impact performance of the EVA mouthguard material.
Resumo:
The emphasis of this work is on the optimal design of MRI magnets with both superconducting coils and ferromagnetic rings. The work is directed to the automated design of MRI magnet systems containing superconducting wire and both `cold' and `warm' iron. Details of the optimization procedure are given and the results show combined superconducting and iron material MRI magnets with excellent field characteristics. Strong, homogeneous central magnetic fields are produced with little stray or external field leakage. The field calculations are performed using a semi-analytical method for both current coil and iron material sources. Design examples for symmetric, open and asymmetric clinical MRI magnets containing both superconducting coils and ferromagnetic material are presented.