969 resultados para Geometrical transforms
Resumo:
The concept of an extended fractional Fourier transform (FRT) is suggested. Previous PBT's and complex FRT's are only its subclasses. Then, through this concept and its method, we explain the physical meaning of any optical Fresnel diffraction through a lens: It is just an extended FRT; a lens-cascaded system can equivalently be simplified to a simple analyzer of the FRT; the two-independent-parameter FRT of an object illuminated with a plane wave can be readily implemented by a lens of arbitrary focal length; when cascading, the Function of each lens unit and the relationship between the adjacent ones are clear and simple; and more parameters and fewer restrictions on cascading make the optical design easy. (C) 1997 Optical Society of America.
Resumo:
An investigation was conducted to estimate the error when the flat-flux approximation is used to compute the resonance integral for a single absorber element embedded in a neutron source.
The investigation was initiated by assuming a parabolic flux distribution in computing the flux-averaged escape probability which occurs in the collision density equation. Furthermore, also assumed were both wide resonance and narrow resonance expressions for the resonance integral. The fact that this simple model demonstrated a decrease in the resonance integral motivated the more detailed investigation of the thesis.
An integral equation describing the collision density as a function of energy, position and angle is constructed and is subsequently specialized to the case of energy and spatial dependence. This equation is further simplified by expanding the spatial dependence in a series of Legendre polynomials (since a one-dimensional case is considered). In this form, the effects of slowing-down and flux depression may be accounted for to any degree of accuracy desired. The resulting integral equation for the energy dependence is thus solved numerically, considering the slowing down model and the infinite mass model as separate cases.
From the solution obtained by the above method, the error ascribable to the flat-flux approximation is obtained. In addition to this, the error introduced in the resonance integral in assuming no slowing down in the absorber is deduced. Results by Chernick for bismuth rods, and by Corngold for uranium slabs, are compared to the latter case, and these agree to within the approximations made.
Resumo:
I show that the research reported by Arieli et al. [Appl. Opt. 86, 9129 (1997)] has two serious mistakes: One is that an important factor is lost in the formula used in that study to determine the x-direction coordinate transformation; the other is the conclusion that the geometrical-transformation approach given by Arieli et al. can provide a smooth phase distribution. A potential research direction for obtaining a smooth phase distribution for a generic two-dimensional beam-shaping problem is stated. (C) 1998 Optical Society of America.
Resumo:
Static optical transmission is restudied by postulation of the optical path as the proper element in a three-dimensional Riemannian manifold (no torsion); this postulation can be applied to describe the light-medium interactive system. On the basis of the postulation, the behaviors of light transmitting through the medium with refractive index n are investigated, the investigation covering the realms of both geometrical optics and wave optics. The wave equation of light in static transmission is studied modally, the postulation being employed to derive the exact form of the optical field equation in a medium (in which the light is viewed as a single-component field). Correspondingly, the relationships concerning the conservation of optical fluid and the dynamic properties are given, and some simple applications of the theories mentioned are presented.
Resumo:
By generalization of the methods presented in Part I of the study [J. Opt. Soc. Am. A 12, 600 (1994)] to the four-dimensional (4D) Riemannian manifold case, the time-dependent behavior of light transmitting in a medium is investigated theoretically by the geodesic equation and curvature in a 4D manifold. In addition, the field equation is restudied, and the 4D conserved current of the optical fluid and its conservation equation are derived and applied to deduce the time-dependent general refractive index. On this basis the forces acting on the fluid are dynamically analyzed and the self-consistency analysis is given.