986 resultados para Geographical structure
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Anopheles darlingi is the most important Brazilian malaria vector, with a widespread distribution in the Amazon forest. Effective strategies for vector control could be better developed through knowledge of its genetic structure and gene flow among populations, to assess the vector diversity and competence in transmitting Plasmodium. The aim of this study was to assess the genetic diversity of An. darlingi collected at four locations in Porto Velho, by sequencing a fragment of the ND4 mitochondrial gene. From 218 individual mosquitoes, we obtained 20 different haplotypes with a diversity index of 0.756, equivalent to that found in other neotropical anophelines. The analysis did not demonstrate significant population structure. However, haplotype diversity within some populations seems to be over-represented, suggesting the presence of sub-populations, but the presence of highly represented haplotypes complicates this analysis. There was no clear correlation among genetic and geographical distance and there were differences in relation to seasonality, which is important for malarial epidemiology.
Resumo:
Determining the genetic structure of tropical bird populations is important for assessing potential genetic effects of future habitat fragmentation and for testing hypotheses about evolutionary mechanisms promoting diversification. Here we used 10 microsatellite DNA loci to describe levels of genetic differentiation for five populations of the lek-mating blue manakin (Chiroxiphia caudata), sampled along a 414-km transect within the largest remaining continuous tract of the highly endangered Atlantic Forest habitat in southeast Brazil. We found small but significant levels of differentiation between most populations. F-ST values varied from 0.0 to 0.023 (overall F-ST = 0.012) that conformed to a strong isolation by distance relationship, suggesting that observed levels of differentiation are a result of migration-drift equilibrium. N(e)m values estimated using a coalescent-based method were small (<= 2 migrants per generation) and close to the minimum level required to maintain genetic similarity between populations. An implication of these results is that if future habitat fragmentation reduces dispersal between populations to even a small extent, then individual populations may undergo a loss of genetic diversity due to an increase in the relative importance of drift, since inbreeding effective population sizes are relatively small (N-e similar to 1000). Our findings also demonstrate that population structuring can occur in a tropical bird in continuous habitat in the absence of geographical barriers possibly due to behavioural features of the species.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background:Lutzomyia longipalpis (Diptera: Psychodidae) is the major vector of Leishmania (Leishmania) infantum and thus plays a crucial role in the epidemiology of American visceral leishmaniasis (AVL). This vector is the best studied species of sand fly in the Neotropical region. Many studies claim that this vector is in fact a species complex; however there is still no consensus regarding the number of species that belong into this complex or the geographical distribution of sibling species. The aim of the present study was to analyze the genetic relationships within Lu. longipalpis populations in the state of Mato Grosso do Sul (MS), Brazil.Methodology/Principal Findings:We collected 30 Lu. longipalpis (15 females and 15 males) from five localities (Campo Grande, Três Lagoas, Aquidauana, Miranda and Bonito) and 30 Lu. Cruzi from Corumbá, totaling 180 sandflies from MS, and 30 Lu. longipalpis from Estrela de Alagoas, state of Alagoas (AL), Northeast Brazil. We show that eight previously described microsatellite loci were sufficient in distinguishing Lu. longipalpis from Lu. Cruzi, which is a closely related species, and in differentiating between Lu. longipalpis collected in MS versus Estrela de Alagoas. Analyses of the genotypes revealed introgression between sympatric Lu. longipalpis and Lu. Cruzi.Conclusions/Significance:Our findings support the hypothesis of cryptic species within the Lu. longipalpis complex. Furthermore, our data revealed introgression between Lu. longipalpis and Lu. cruzi. This phenomenon should be further investigated to determine the level and incidence of hybridization between these two species. We also demonstrated that microsatellite markers are a powerful tool for differentiating sand fly populations and species. The present study has elucidated the population structure of Lu. longipalpis in MS and, by extension, the Neotropical Lu. longipalpis complex itself. © 2013 Santos et al.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the present study, mitochondrial (mt)DNA sequence data were used to examine the genetic structure of fire-eye antbirds (genus Pyriglena) along the Atlantic Forest and the predictions derived from the river hypothesis and from a Last Glacial Maximum Pleistocene refuge paleomodel were compared to explain the patterns of genetic variation observed in these populations. A total of 266 individuals from 45 populations were sampled over a latitudinal transect and a number of phylogeographical and population genetics analytical approaches were employed to address these questions. The pattern of mtDNA variation observed in fire-eye antbirds provides little support for the view that populations were isolated by the modern course of major Atlantic Forest rivers. Instead, the data provide stronger support for the predictions of the refuge model. These results add to the mounting evidence that climatic oscillations appear to have played a substantial role in shaping the phylogeographical structure and possibly the diversification of many taxa in this region. However, the results also illustrate the potential for more complex climatic history and historical changes in the geographical distribution of Atlantic Forest than envisioned by the refuge model. (c) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105, 900824.
Resumo:
The Brazilian population represents an admixture of native Amerindians, Portuguese settlers and Africans who were brought as slaves during the colonization period that began in the 16th century and was followed by waves of immigrations of Europeans and Asians in the 20th century. The contribution of these different ethnic groups to the constitution of Brazilian populations from different geographic regions is variable and, in addition to environmental factors, might act by determining different allele profiles among Brazilian populations from different regions. We studied polymorphic sites at the 3' untranslated region of the HLA-G gene in individuals from a Northeastern Brazilian region and compared them to our previously published data about a Southeastern Brazilian region, located at a distance of 2589 km. Our results showed that most polymorphic sites present a similar distribution in both populations, except for the lower frequency of the +3003C allele in the Northeastern population compared to the Southeastern population. Although differences in genotypic distribution were only significant for the +3003 locus (P = 0.0201), the diversity of haplotypes was distinct for each population. These results are important for casecontrol studies on the association of human leucocyte antigen-G polymorphism with disease and also in terms of the genetic structure of two distinct Brazilian populations.
Resumo:
Hancornia speciosa Gomes is a fruit tree native from Brazil that belongs to Apocinaceae family, and is popularly known as Mangabeira. Its fruits are widely consumed raw or processed as fruit jam, juices and ice creams, which have made it a target of intense exploitation. The extractive activities and intense human activity on the environment of natural occurrence of H. speciosa has caused genetic erosion in the species and little is known about the ecology or genetic structure of natural populations. The objective of this research was the evaluation of the genetic diversity and genetic structure of H. speciosa var. speciosa. The genetic variability was assessed using 11 allozyme loci with a sample of 164 individuals distributed in six natural populations located in the States of Pernambuco and Alagoas, Northeastern Brazil. The results showed a high level of genetic diversity within the species (e= 0.36) seeing that the most of the genetic variability of H. speciosa var. speciosa is within its natural populations with low difference among populations ( or = 0.081). The inbreeding values within ( = -0.555) and among populations ( =-0.428) were low showing lacking of endogamy and a surplus of heterozygotes. The estimated gene flow ( m ) was high, ranging from 2.20 to 13.18, indicating to be enough to prevent the effects of genetic drift and genetic differentiation among populations. The multivariate analyses indicated that there is a relationship between genetic and geographical distances, which was confirmed by a spatial pattern analysis using Mantel test (r = 0.3598; p = 0.0920) with 1000 random permutations. The high genetic diversity index in these populations indicates potential for in situ genetic conservation.
Resumo:
Introgression of domestic cat genes into European wildcat (Felis silvestris silvestris) populations and reduction of wildcats’ range in Europe, leaded by habitat loss and fragmentation, are considered two of the main conservation problems for this endangered feline. This thesis addressed the questions related with the artificial hybridization and populations’ fragmentation, using a conservation genetics perspective. We combined the use of highly polymorphic loci, Bayesian statistical inferences and landscape analyses tools to investigate the origin of the geographic-genetic substructure of European wildcats (Felis silvestris silvestris) in Italy and Europe. The genetic variability of microsatellites evidenced that European wildcat populations currently distributed in Italy differentiated in, and expanded from two distinct glacial refuges during the Last Glacial Maximum. The genetic and geographic substructure detected between the eastern and western sides of the Apennine ridge, resulted by adaptation to specific ecological conditions of the Mediterranean habitats. European wildcat populations in Europe are strongly structured into 5 geographic-genetic macro clusters corresponding to: the Italian peninsular & Sicily; Balkans & north-eastern Italy; Germany eastern; central Europe; and Iberian Peninsula. Central European population might have differentiated in the extra-Mediterranean Würm ice age refuge areas (Northern Alps, Carpathians, and the Bulgarian mountain systems), while the divergence among and within the southern European populations might have resulted by the Pleistocene bio geographical framework of Europe, with three southern refugia localized in the Balkans, Italian Peninsula and Iberia Peninsula. We further combined the use of most informative autosomal SNPs with uniparental markers (mtDNA and Y-linked) for accurately detecting parental genotypes and levels of introgressive hybridization between European wild and domestic cats. A total of 11 hybrids were identified. The presence of domestic mitochondrial haplotypes shared with some wild individuals led us to hypnotize the possibility that ancient introgressive events might have occurred and that further investigation should be recommended.
Resumo:
This study focused on the role of oceanographic discontinuities and the presence of transitional areas in shaping the population structure and the phylogeography of the Raja miraletus species complex, coupled with the test of the effective occurrence of past speciation events. The comparisons between the Atlantic African and the North-Eastern Atlantic-Mediterranean geographic populations were unravelled using both Cytochrome Oxidase I and eight microsatellite loci. This approach guaranteed a robust dataset for the identification of a speciation event between the Atlantic African clade, corresponding to the ex Raja ocellifera nominal species, and the NE Atlantic-Mediterranean R. miraletus clade. As a matter of fact, the origin of the Atlantic Africa and the NE Atlantic-Mediterranean deep split dated about 11.74MYA and was likely due to the synergic influence currents and two upwelling areas crossing the Western African Waters. Within the Mediterranean Sea, particular attention was also paid to the transitional area represented by Adventura and Maltese Bank, that might have contributed in sustaining the connectivity of the Western and the Eastern Mediterranean geographical populations. Furthermore, the geology of the easternmost part of Sicily and the geo-morphological depression of the Calabrian Arc could have driven the differentiation of the Eastern Mediterranean Sea. Although bathymetric and oceanographic discontinuity could represent barriers to dispersal and migration between Eastern and Western Mediterranean samples, a clear and complete genetic separation among them was not detected. Results produced by this work identified a speciation event defining Raja ocellifera and R. miraletus as two different species, and describing the R. miraletus species complex as the most ancient cryptic speciation event in the family Rajidae, representing another example of how strictly connected the environment, the behavioural habits and the evolutionary and ecologic drivers are.