996 resultados para Geographical images
Resumo:
The most common software analysis tools available for measuring fluorescence images are for two-dimensional (2D) data that rely on manual settings for inclusion and exclusion of data points, and computer-aided pattern recognition to support the interpretation and findings of the analysis. It has become increasingly important to be able to measure fluorescence images constructed from three-dimensional (3D) datasets in order to be able to capture the complexity of cellular dynamics and understand the basis of cellular plasticity within biological systems. Sophisticated microscopy instruments have permitted the visualization of 3D fluorescence images through the acquisition of multispectral fluorescence images and powerful analytical software that reconstructs the images from confocal stacks that then provide a 3D representation of the collected 2D images. Advanced design-based stereology methods have progressed from the approximation and assumptions of the original model-based stereology(1) even in complex tissue sections(2). Despite these scientific advances in microscopy, a need remains for an automated analytic method that fully exploits the intrinsic 3D data to allow for the analysis and quantification of the complex changes in cell morphology, protein localization and receptor trafficking. Current techniques available to quantify fluorescence images include Meta-Morph (Molecular Devices, Sunnyvale, CA) and Image J (NIH) which provide manual analysis. Imaris (Andor Technology, Belfast, Northern Ireland) software provides the feature MeasurementPro, which allows the manual creation of measurement points that can be placed in a volume image or drawn on a series of 2D slices to create a 3D object. This method is useful for single-click point measurements to measure a line distance between two objects or to create a polygon that encloses a region of interest, but it is difficult to apply to complex cellular network structures. Filament Tracer (Andor) allows automatic detection of the 3D neuronal filament-like however, this module has been developed to measure defined structures such as neurons, which are comprised of dendrites, axons and spines (tree-like structure). This module has been ingeniously utilized to make morphological measurements to non-neuronal cells(3), however, the output data provide information of an extended cellular network by using a software that depends on a defined cell shape rather than being an amorphous-shaped cellular model. To overcome the issue of analyzing amorphous-shaped cells and making the software more suitable to a biological application, Imaris developed Imaris Cell. This was a scientific project with the Eidgenössische Technische Hochschule, which has been developed to calculate the relationship between cells and organelles. While the software enables the detection of biological constraints, by forcing one nucleus per cell and using cell membranes to segment cells, it cannot be utilized to analyze fluorescence data that are not continuous because ideally it builds cell surface without void spaces. To our knowledge, at present no user-modifiable automated approach that provides morphometric information from 3D fluorescence images has been developed that achieves cellular spatial information of an undefined shape (Figure 1). We have developed an analytical platform using the Imaris core software module and Imaris XT interfaced to MATLAB (Mat Works, Inc.). These tools allow the 3D measurement of cells without a pre-defined shape and with inconsistent fluorescence network components. Furthermore, this method will allow researchers who have extended expertise in biological systems, but not familiarity to computer applications, to perform quantification of morphological changes in cell dynamics.
Resumo:
This paper seeks to document and understand one instance of community-university engagement: that of an on-going book club organised in conjunction with public art exhibitions. The curator of the Queensland University of Technology (QUT) Art Museum invited the authors, three postgraduate research students in the faculty of Creative Writing and Literary Studies at QUT, to facilitate an informal book club. The purpose of the book club was to generate discussion, through engagement with fiction, around the themes and ideas explored in the Art Museum’s exhibitions. For example, during the William Robinson exhibition, which presented evocative images of the environment around Brisbane, Queensland, the book club explored texts that symbolically represented aspects of the Australian landscape in a variety of modes and guises. This paper emerges as a result of the authors’ observations during, and reflections on, their experiences facilitating the book club. It responds to the research question, how can we create a best practice model to engage readers through open-ended, reciprocal discussion of fiction, while at the same time encouraging interactions in the gallery space? To provide an overview of reading practices in book clubs, we rely on Jenny Hartley’s seminal text on the subject, The Reading Groups Book (2002). Although the book club was open to all members of the community, the participants were generally women. Elizabeth Long, in Book Clubs: Woman and the Uses of Reading in the Everyday (2003), offers a comprehensive account of women’s interactions as they engage in a reading community. Long (2003, 2) observes that an image of the solitary reader governs our understanding of reading. Long challenges this notion, arguing that reading is profoundly social (ibid), and, as women read and talk in book clubs, ‘they are supporting each other in a collective working-out of their relationship to a particular historical movement and the particular social conditions that characterise it’ (Long 2003, 22). Despite the book club’s capacity to act as a forum for analytical discussion, DeNel Rehberg Sedo (2010, 2) argues that there are barriers to interaction in such a space, including that members require a level of cultural capital and literacy before they feel comfortable to participate. How then can we seek to make book clubs more inclusive, and encourage readers to discuss and question outside of their comfort zone? How can we support interactions with texts and images? In this paper, we draw on pragmatic and self-reflective practice methods to document and evaluate the development of the book club model designed to facilitate engagement. We discuss how we selected texts, negotiating the dual needs of relevance to the exhibition and engagement with, and appeal to, the community. We reflect on developing questions and material prior to the book club to encourage interaction, and describe how we developed a flexible approach to question-asking and facilitating discussion. We conclude by reflecting on the outcomes of and improvements to the model.
Resumo:
In this paper a real-time vision based power line extraction solution is investigated for active UAV guidance. The line extraction algorithm starts from ridge points detected by steerable filters. A collinear line segments fitting algorithm is followed up by considering global and local information together with multiple collinear measurements. GPU boosted algorithm implementation is also investigated in the experiment. The experimental result shows that the proposed algorithm outperforms two baseline line detection algorithms and is able to fitting long collinear line segments. The low computational cost of the algorithm make suitable for real-time applications.
Resumo:
A sound knowledge of pathological disease processes is required for professional practice within health professions. The project described in this paper reviewed the resources currently available for the delivery of systematic pathology tutorials. Additional complementary resources were developed and the inclusion of these additional learning resources in practical tutorial sessions was evaluated for their impact on student learning. Student evaluation of the learning resources was undertaken across one semester with two different cohorts of health profession students using questionnaires and focus group discussion. Both cohorts reported an enhancement to their understanding of pathological disease processes through the use of the additional resources. Results indicate student perception of the value of the resources correlates with staff perception and is independent of prior experiences.
Resumo:
Psittacine beak and feather disease (PBFD) has a broad host range and is widespread in wild and captive psittacine populations in Asia, Africa, the Americas, Europe and Australasia. Beak and feather disease circovirus (BFDV) is the causative agent. BFDV has an ~2 kb single stranded circular DNA genome encoding just two proteins (Rep and CP). In this study we provide support for demarcation of BFDV strains by phylogenetic analysis of 65 complete genomes from databases and 22 new BFDV sequences isolated from infected psittacines in South Africa. We propose 94% genome-wide sequence identity as a strain demarcation threshold, with isolates sharing > 94% identity belonging to the same strain, and strain subtypes sharing> 98% identity. Currently, BFDV diversity falls within 14 strains, with five highly divergent isolates from budgerigars probably representing a new species of circovirus with three strains (budgerigar circovirus; BCV-A, -B and -C). The geographical distribution of BFDV and BCV strains is strongly linked to the international trade in exotic birds; strains with more than one host are generally located in the same geographical area. Lastly, we examined BFDV and BCV sequences for evidence of recombination, and determined that recombination had occurred in most BFDV and BCV strains. We established that there were two globally significant recombination hotspots in the viral genome: the first is along the entire intergenic region and the second is in the C-terminal portion of the CP ORF. The implications of our results for the taxonomy and classification of circoviruses are discussed. © 2011 SGM.
Resumo:
This paper explores the occurrence of geographical inquiry in the Australian curriculum since Geography became a high school subject in 1911. In this historical overview, I reflect upon my own experiences of undertaking geographical inquiry during the 1970’s and 1980’s. Primary school geographical inquiry experiences can be virtually non-existent despite being advocated in syllabus documents. High school geographical inquiry experiences do exist in some classrooms, but that geographic drive is also necessary to complete a meaningful inquiry experience. Although geographical inquiry is heavily advocated in Australia’s new Australian Curriculum: Geography, more work is needed in this area relating to teacher professional learning.
Resumo:
This paper examines the history of the IRGEE Journal in terms of its sustainable future. The development of geographical and environmental education is evaluated, as reflected from the articles published in the Journal “International Research in Geographical and Environmental Education” (IRGEE). A content analysis of all papers and forum sections which have appeared in the journal since Volume 1 Number 1 was published in 1992 has been conducted, examining the content of as many as 526 articles. The method was a content analysis, and revealed themes which have experienced an increasing or declining interest over the 18 years of publication of IRGEE (1992-2009), while other themes have remained current during this period. The main findings of this analysis are: a) the total number of articles has increased more than threefold, b) articles related to geographical education (sensu stricto) outweighed those related to environmental education, c) the themes “syllabi, textbooks, curricula” and “values, attitudes” attract the attention of researchers with increasing strength and d) emerging subjects, such as GIS and sustainability have appeared dynamically in the last years.
Resumo:
Certain statistic and scientometric features of articles published in the journal “International Research in Geographical and Environmental Education” are examined in this paper, for the period 1992-2009, by applying nonparametric statistics and Shannon’s entropy (diversity) formula. The main findings of this analysis are: a) after 2004 the research priorities of researchers in geographical and environmental education seem to have changed, b) “teacher education” has been the most recurrent theme throughout these 18 years, followed by “values & attitudes” and “inquiry & problem solving” c) the themes “GIS” and “Sustainability” were the most “stable” throughout the 18 years, meaning that they maintained their ranks as publication priorities more than other themes, d) citations of IRGEE increase annually, e) the average thematic diversity of articles published during the period 1992-2009 is 82.7% of the maximum thematic diversity (very high), meaning that the Journal has the capacity to attract a wide readership for the 10 themes it has successfully covered throughout the 18 years of its publication.
Resumo:
High resolution TEM images of boron carbide (B13C2) have been recorded and compared with images calculated using the multislice method as implemented by M. A. O'Keefe in the SHRLI programs. Images calculated for the [010] zone, using machine parameters for the JEOL 2000FX AEM operating at 200 keV, indicate that for the structure model of Will et al., the optimum defocus image can be interpreted such that white spots correspond to B12 icosahedra for thin specimens and to low density channels through the structure adjacent to the direct inter-icosahedral bonds for specimens of intermediate thickness (-40 > t > -100 nm). With this information, and from the symmetry observed in the TEM images, it is likely that the (101) twin plane passes through the center of icosahedron located at the origin. This model was tested using the method of periodic continuation. Resulting images compare favorably with experimental images, thus supporting the structural model. The introduction of a (101) twin plane through the origin creates distortions to the icosahedral linkages as well as to the intra-icosahedral bonding. This increases the inequivalence of adjacent icosahedral sites along the twin plane, and thereby increases the likelihood of bipolaron hopping.
Resumo:
Highly sensitive infrared (IR) cameras provide high-resolution diagnostic images of the temperature and vascular changes of breasts. These images can be processed to emphasize hot spots that exhibit early and subtle changes owing to pathology. The resulting images show clusters that appear random in shape and spatial distribution but carry class dependent information in shape and texture. Automated pattern recognition techniques are challenged because of changes in location, size and orientation of these clusters. Higher order spectral invariant features provide robustness to such transformations and are suited for texture and shape dependent information extraction from noisy images. In this work, the effectiveness of bispectral invariant features in diagnostic classification of breast thermal images into malignant, benign and normal classes is evaluated and a phase-only variant of these features is proposed. High resolution IR images of breasts, captured with measuring accuracy of ±0.4% (full scale) and temperature resolution of 0.1 °C black body, depicting malignant, benign and normal pathologies are used in this study. Breast images are registered using their lower boundaries, automatically extracted using landmark points whose locations are learned during training. Boundaries are extracted using Canny edge detection and elimination of inner edges. Breast images are then segmented using fuzzy c-means clustering and the hottest regions are selected for feature extraction. Bispectral invariant features are extracted from Radon projections of these images. An Adaboost classifier is used to select and fuse the best features during training and then classify unseen test images into malignant, benign and normal classes. A data set comprising 9 malignant, 12 benign and 11 normal cases is used for evaluation of performance. Malignant cases are detected with 95% accuracy. A variant of the features using the normalized bispectrum, which discards all magnitude information, is shown to perform better for classification between benign and normal cases, with 83% accuracy compared to 66% for the original.
Resumo:
Contemporary 3D radiotherapy treatment planning relies upon the use of 3D electron density maps derived from computed tomography (CT) scans of patient anatomy, to evaluate the effects of that anatomy on radiation dose distributions. Production of these electron density maps requires that the CT numbers (Hounsfield units) that quantify the attenuation of the x-ray beam by the patient’s anatomy must be reliably converted into electron densities, using a stable calibration relationship. This study investigates the fidelity of electron density assignment in the presence of metallic prostheses and implants.
Resumo:
In this study x-ray CT has been used to produce a 3D image of an irradiated PAGAT gel sample, with noise-reduction achieved using the ‘zero-scan’ method. The gel was repeatedly CT scanned and a linear fit to the varying Hounsfield unit of each pixel in the 3D volume was evaluated across the repeated scans, allowing a zero-scan extrapolation of the image to be obtained. To minimise heating of the CT scanner’s x-ray tube, this study used a large slice thickness (1 cm), to provide image slices across the irradiated region of the gel, and a relatively small number of CT scans (63), to extrapolate the zero-scan image. The resulting set of transverse images shows reduced noise compared to images from the initial CT scan of the gel, without being degraded by the additional radiation dose delivered to the gel during the repeated scanning. The full, 3D image of the gel has a low spatial resolution in the longitudinal direction, due to the selected scan parameters. Nonetheless, important features of the dose distribution are apparent in the 3D x-ray CT scan of the gel. The results of this study demonstrate that the zero-scan extrapolation method can be applied to the reconstruction of multiple x-ray CT slices, to provide useful 2D and 3D images of irradiated dosimetry gels.
Resumo:
Background: Nurse-patient communication in the hemodialysis context is unique given the amount of time spent together in a confined clinical room. Poor communication may lead to low quality nursing care and undesirable patient outcomes. Aim: To explore the use of images as a visual communication technique for nurses and patients in the hemodialysis context. Methods: Descriptive qualitative design. Fifty two cards containing specific photos, illustrations and words were used in conversations between patients (n = 9) and one of two nurse interviewers about being on hemodialysis. Interview transcripts were thematically analysed. Findings: An overall theme titled ‘revealing the hidden struggles of living on dialysis’ conceptually captured three sub-themes: (1) the increased importance of relationships; (2) the struggle with money; and (3) quality over quantity of life. The cards assisted in uncovering these often covert (to nurses) aspects of dialysis patients’ lives. Conclusion: Nurses may need to be aware of the dialysis patients’ hidden struggles which include the importance of relationships, financial issues and the importance of quality aspects such as travel. The use of images may assist in revealing the important issues for each patient struggling with the restrictive life that is imposed by dialysis.
Resumo:
There is an increasing interest in the use of information technology as a participatory planning tool, particularly the use of geographical information technologies to support collaborative activities such as community mapping. However, despite their promise, the introduction of such technologies does not necessarily promote better participation nor improve collaboration. In part this can be attributed to a tendency for planners to focus on the technical considerations associated with these technologies at the expense of broader participation considerations. In this paper we draw on the experiences of a community mapping project with disadvantaged communities in suburban Australia to highlight the importance of selecting tools and techniques which support and enhance participatory planning. This community mapping project, designed to identify and document community-generated transport issues and solutions, had originally intended to use cadastral maps extracted from the government’s digital cadastral database as the foundation for its community mapping approach. It was quickly discovered that the local residents found the cadastral maps confusing as the maps lacked sufficient detail to orient them to their suburb (the study area). In response to these concerns and consistent with the project’s participatory framework, a conceptual base map based on resident’s views of landmarks of local importance was developed to support the community mapping process. Based on this community mapping experience we outline four key lessons learned regarding the process of community mapping and the place of geographical information technologies within this process.