896 resultados para Genotype and phenotype


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Individuals differ widely in how steeply they discount future rewards. The sources of these stable individual differences in delay discounting (DD) are largely unknown. One candidate is the COMT Val158Met polymorphism, known to modulate prefrontal dopamine levels and affect DD. To identify possible neural mechanisms by which this polymorphism may contribute to stable individual DD differences, we measured 73 participants' neural baseline activation using resting electroencephalogram (EEG). Such neural baseline activation measures are highly heritable and stable over time, thus an ideal endophenotype candidate to explain how genes may influence behavior via individual differences in neural function. After EEG-recording, participants made a series of incentive-compatible intertemporal choices to determine the steepness of their DD. We found that COMT significantly affected DD and that this effect was mediated by baseline activation level in the left dorsal prefrontal cortex (DPFC): (i) COMT had a significant effect on DD such that the number of Val alleles was positively correlated with steeper DD (higher numbers of Val alleles means greater COMT activity and thus lower dopamine levels). (ii) A whole-brain search identified a cluster in left DPFC where baseline activation was correlated with DD; lower activation was associated with steeper DD. (iii) COMT had a significant effect on the baseline activation level in this left DPFC cluster such that a higher number of Val alleles was associated with lower baseline activation. (iv) The effect of COMT on DD was explained by the mediating effect of neural baseline activation in the left DPFC cluster. Our study thus establishes baseline activation level in left DPFC as salient neural signature in the form of an endophenotype that mediates the link between COMT and DD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid and simple DNA labeling system has been developed for disposable microarrays and has been validated for the detection of 117 antibiotic resistance genes abundant in Gram-positive bacteria. The DNA was fragmented and amplified using phi-29 polymerase and random primers with linkers. Labeling and further amplification were then performed by classic PCR amplification using biotinylated primers specific for the linkers. The microarray developed by Perreten et al. (Perreten, V., Vorlet-Fawer, L., Slickers, P., Ehricht, R., Kuhnert, P., Frey, J., 2005. Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. J.Clin.Microbiol. 43, 2291-2302.) was improved by additional oligonucleotides. A total of 244 oligonucleotides (26 to 37 nucleotide length and with similar melting temperatures) were spotted on the microarray, including genes conferring resistance to clinically important antibiotic classes like β-lactams, macrolides, aminoglycosides, glycopeptides and tetracyclines. Each antibiotic resistance gene is represented by at least 2 oligonucleotides designed from consensus sequences of gene families. The specificity of the oligonucleotides and the quality of the amplification and labeling were verified by analysis of a collection of 65 strains belonging to 24 species. Association between genotype and phenotype was verified for 6 antibiotics using 77 Staphylococcus strains belonging to different species and revealed 95% test specificity and a 93% predictive value of a positive test. The DNA labeling and amplification is independent of the species and of the target genes and could be used for different types of microarrays. This system has also the advantage to detect several genes within one bacterium at once, like in Staphylococcus aureus strain BM3318, in which up to 15 genes were detected. This new microarray-based detection system offers a large potential for applications in clinical diagnostic, basic research, food safety and surveillance programs for antimicrobial resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM Decreased DPD activity is a major cause of 5-fluorouracil (5-FU) toxicity, but known reduced-function variants in the DPD gene (DPYD) explain only a part of DPD-related 5-FU toxicities. Here, we evaluated the baseline (pretherapeutic) plasma 5,6-dihydrouracil:uracil (UH2:U) ratio as a marker of DPD activity in the context of DPYD genotypes. MATERIALS & METHODS DPYD variants were genotyped and plasma U, UH2 and 5-FU concentrations were determined by liquid chromatography-tandem mass spectrometry in 320 healthy blood donors and 28 cancer patients receiving 5-FU-based chemotherapy. RESULTS Baseline UH2:U ratios were strongly correlated with generally low and highly variable U concentrations. Reduced-function DPYD variants were only weakly associated with lower baseline UH2:U ratios. However, the interindividual variability in the UH2:U ratio was reduced and a stronger correlation between ratios and 5-FU exposure was observed in cancer patients during 5-FU administration. CONCLUSION These results suggest that the baseline UH2:U plasma ratio in most individuals reflects the nonsaturated state of DPD and is not predictive of decreased DPD activity. It may, however, be highly predictive at increased substrate concentrations, as observed during 5-FU administration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tef [Eragrostis tef (Zucc.) Trotter] is the major cereal crop in the Horn of Africa particularly in Ethiopia where it is staple food for about 50 million people. Its resilience to extreme environmental conditions and high in nutrition makes tef the preferred crop among both farmers and consumers. The efficiency of in vitro regeneration plays significant role in the improvement of crops. We investigated the efficiency of regeneration in 18 tef genotypes (15 landraces and three improved varieties) using three sizes of immature embryos (small, intermediate and large) as an explant. In vitro regeneration was significantly affected by the genotype and the size of the immature embryo used as a donor. Intermediate-size immature embryos which were 101-350 µm long led to the highest percentage of regeneration. Interestingly, the three improved varieties presented very low regeneration efficiencies whereas the landrace Manyi resulted in consistently superior percentage of in vitro regeneration from all three sizes of explants. The findings of this work provide useful insight into the tef germplasm amenable for the regeneration technique which has direct application in techniques such as transformation. It also signifies the importance of using tef landraces instead of improved varieties for in vitro regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The parasitic protists in the genus Tritrichomonas cause significant disease in domestic cattle and cats. To assess the genetic diversity of feline and bovine isolates of Tritrichomonas foetus (Riedmüller, 1928) Wenrich and Emmerson, 1933, we used 10 different genetic regions, namely the protein coding genes of cysteine proteases 1, 2 and 4-9 (CP1, 2, 4-9) involved in the pathogenesis of the disease caused by the parasite. The cytosolic malate dehydrogenase 1 (MDH1) and internal transcribed spacer region 2 of the rDNA unit (ITS2) were included as additional markers. The gene sequences were compared with those of Tritrichomonas suis (Davaine, 1875) Morgan and Hawkins, 1948 and Tritrichomonas mobilensisCulberson et al., 1986. The study revealed 100% identity for all 10 genes among all feline isolates (=T. foetus cat genotype), 100% identity among all bovine isolates (=T. foetus cattle genotype) and a genetic distinctness of 1% between the cat and cattle genotypes of T. foetus. The cattle genotype of T. foetus was 100% identical to T. suis at nine loci (CP1, 2, 4-8, ITS2, MDH1). At CP9, three out of four T. suis isolates were identical to the T. foetus cattle genotype, while the T. suis isolate SUI-H3B sequence contained a single unique nucleotide substitution. Tritrichomonas mobilensis was 0.4% and 0.7% distinct from the cat and cattle genotypes of T. foetus, respectively. The genetic differences resulted in amino acid changes in the CP genes, most pronouncedly in CP2, potentially providing a platform for elucidation of genotype-specific host-pathogen interactions of T. foetus. On the basis of this data we judge T. suis and T. foetus to be subjective synonyms. For the first time, on objective nomenclatural grounds, the authority of T. suis is given to Davaine, 1875, rather than the commonly cited Gruby and Delafond, 1843. To maintain prevailing usage of T. foetus, we are suppressing the senior synomym T. suisDavaine, 1875 according to Article 23.9, because it has never been used as a valid name after 1899 and T. foetus is widely discussed as the cause of bovine trichomonosis. Thus bovine, feline and porcine isolates should all be given the name T. foetus. This promotes the stability of T. foetus for the veterinary and economically significant venereal parasite causing bovine trichomonosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Noro virus, a positive single stranded RNA virus has been identified as a major etiologic agent in food borne gastroenteritis and diarrheal diseases. The emergence of this organism as a major non-bacterial cause in such outbreaks is partly due to the improved diagnostic tools like Reverse Transcription Polymerase chain reaction (RTPCR) that enable its detection. Noro virus accounts for nearly 96% of non-bacterial gastroenteritis outbreaks in US (1). Travelers' Diarrhea (TD) has remained a constant public health risk in the developed nations for decades and bacteria like Entero toxigenic Escherichia coli, Entero aggregative Escherichia coli have been described as the main etiologic agents for TD (2-4). A possible viral contribution to TD has been discovered in two studies (5, 6). The current study was designed to determine the prevalence of Noro virus in a population of 107 US students with TD acquired in Mexico in 2005 and to compare the prevalence to the prevalence of Noro virus in a similar study done in 2004. This study involved the testing of clinical stool specimens from 107 subjects in 2005 for the presence of Noro virus using RTPCR. The prevalence of Noro virus in 2004 used for comparison to 2005 data was obtained from published data (5). All subjects were recruited as TD subjects in a randomized, double-blinded clinical trial comparing a standard three day dosing of Rifaximin with and without an anti motility drug Loperamide. The prevalence of Noro virus geno group I was similar in both years, but geno group II prevalence differed across the two years (p = 0.003). This study finding suggests that the prevalence of Noro virus geno groups varies with time even within a specific geographic location. This study emphasizes the need for further systematic epidemiologic studies to determine the molecular epidemiology and the prevalence patterns of different geno groups of this virus. These are essential to planning and implementation of public health measures to lessen the burden of TD due to Noro virus infection among US travelers. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discovery that the epsilon 4 allele of the apolipoprotein E (apoE) gene is a putative risk factor for Alzheimer disease (AD) in the general population has highlighted the role of genetic influences in this extremely common and disabling illness. It has long been recognized that another genetic abnormality, trisomy 21 (Down syndrome), is associated with early and severe development of AD neuropathological lesions. It remains a challenge, however, to understand how these facts relate to the pathological changes in the brains of AD patients. We used computerized image analysis to examine the size distribution of one of the characteristic neuropathological lesions in AD, deposits of A beta peptide in senile plaques (SPs). Surprisingly, we find that a log-normal distribution fits the SP size distribution quite well, motivating a porous model of SP morphogenesis. We then analyzed SP size distribution curves in genotypically defined subgroups of AD patients. The data demonstrate that both apoE epsilon 4/AD and trisomy 21/AD lead to increased amyloid deposition, but by apparently different mechanisms. The size distribution curve is shifted toward larger plaques in trisomy 21/AD, probably reflecting increased A beta production. In apoE epsilon 4/AD, the size distribution is unchanged but the number of SP is increased compared to apoE epsilon 3, suggesting increased probability of SP initiation. These results demonstrate that subgroups of AD patients defined on the basis of molecular characteristics have quantitatively different neuropathological phenotypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selective destruction of malignant tumor cells without damaging normal cells is an important goal for cancer chemotherapy in the 21st century. Differentiating agents that transform cancer cells to either a nonproliferating or normal phenotype could potentially be tissue-specific and avoid side effects of current drugs. However, most compounds that are presently known to differentiate cancer cells are histone deacetylase inhibitors that are of low potency or suffer from low bioavailability, rapid metabolism, reversible differentiation, and nonselectivity for cancer cells over normal cells. Here we describe 36 nonpeptidic compounds derived from a simple cysteine scaffold, fused at the C-terminus to benzylamine, at the N-terminus to a small library of carboxylic acids, and at the S-terminus to 4-butanoyl hydroxamate. Six compounds were cytotoxic at nanomolar concentrations against a particularly aggressive human melanoma cell line (MM96L), four compounds showed selectivities of greater than or equal to5:1 for human melanoma over normal human cells (NFF), and four of the most potent compounds were further tested and found to be cytotoxic for six other human cancer cell lines (melanomas SK-MEL-28, DO4; prostate DU145; breast MCF-7; ovarian JAM, CI80-13S). The most active compounds typically caused hyperacetylation of histones, induced p21 expression, and reverted phenotype of surviving tumor cells to a normal morphology. Only one compound was given orally at 5 mg/kg to healthy rats to look for bioavailaiblity, and it showed reasonably high levels in plasma (C-max 6 mug/mL, T-max 15 min) for at least 4 h. Results are sufficiently promising to support further work on refining this and related classes of compounds to an orally active, more tumor-selective, antitumor drug.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The GH receptor (GHR) is essential for normal postnatal growth and development, and the molecular basis of GHR action has been studied intensively. Clinical case studies and more recently mouse models have revealed the extensive phenotype of impaired GH action. We recently reported two new mouse models, possessing cytoplasmic truncations at position 569 (plus Y539/545-F) and 391, which were created to identify functional subdomains within the cytoplasmic signaling domain. In the homozygous state, these animals show progressively impaired postnatal growth coupled with complex changes in gene expression. We describe here an extended phenotype analysis encompassing the heterozygote state to identify whether single copies of these mutant receptors bring about partial or dominant-negative phenotypes. It appears that the retention of the ubiquitin-dependent endocytosis motif the N-terminal cytoplasmic domain permits turnover of these mutant receptors because no dominant-negative phenotype is seen. Nonetheless, we do observe partial impairment of postnatal growth in heterozygotes supporting limited haploinsufficiency. Reproductive function is impaired in these models in a progressive manner, in parallel with loss of signal transducer and activator of transcription-5 activation ability. In summary, we describe a more comprehensive phenotypic analysis of these mouse models, encompassing overall and longitudinal body growth, reproductive function, and hormonal status in both the heterozygote and homozygote state. Our results suggest that patients expressing single copies of similarly mutated GHRs would not display an obvious clinical phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serotonin can modulate the activity of neural reward pathways that are strongly implicated in mediating the effects of chronic alcohol misuse, and its treatment, in human subjects. In previous work and as discussed elsewhere at this meeting, we and others have found consistent differences in the parameters of GABA and glutamate receptors, and the expression of their component subunit transcripts and proteins, in areas of the alcoholic brain that are altered by alcoholism. We did not fi nd clear changes in GABA and glutamate transport function in such samples, but a series of microarray analyses showed consistent upregulation of the presynaptic GABA/betaine transporter SLC6A12. Microarray studies showed no signifi cant differences in the expression of transcripts associated with 5HT transmission; however, only a small number of such elements were present on the arrays. Here we partitioned GABAA and NMDA pharmacology, and subunit mRNA and protein expression, measured in samples of frontal and motor cortex obtained at autopsy from alcoholics without comorbid disease, alcoholics with liver cirrhosis, and controls, according to 5HTTLPR (SLC6A4) and 5HT1B (HTR1B) polymorphisms. We found no effect of these genotypes on the expression of GABAA receptor gene products, but there was a signifi cant mRNA Transcript X Area X Group X 5HTTLPR Interaction with NMDA subunit isoform expression measured by Real Time PCR with GAPDH normalization. Further analysis showed the effect to be selective for alcoholics with cirrhosis, to be most marked in the pathologically vulnerable frontal cortex, and to vary with subunit transcript (F2,76 = 6.545, P = 0.002). NR1 expression was most affected, followed by NR2A, with NR2B expression least altered. Pilot data suggest 5HT1B genotype may also modulate NMDA subunit expression. Interactions between amino acid and serotonin transmission may infl uence susceptibility to alcohol dependence or pathogenesis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background:Cervical compressive myelopathy, e.g. due to spondylosis or ossification of the posterior longitudinal ligament is a common cause of spinal cord dysfunction. Although human pathological studies have reported neuronal loss and demyelination in the chronically compressed spinal cord, little is known about the mechanisms involved. In particular, the neuroinflammatory processes that are thought to underlie the condition are poorly understood. The present study assessed the localized prevalence of activated M1 and M2 microglia/macrophages in twy/twy mice that develop spontaneous cervical spinal cord compression, as a model of human disease.Methods:Inflammatory cells and cytokines were assessed in compressed lesions of the spinal cords in 12-, 18- and 24-weeks old twy/twy mice by immunohistochemical, immunoblot and flow cytometric analysis. Computed tomography and standard histology confirmed a progressive spinal cord compression through the spontaneously development of an impinging calcified mass.Results:The prevalence of CD11b-positive cells, in the compressed spinal cord increased over time with a concurrent decrease in neurons. The CD11b-positive cell population was initially formed of arginase-1- and CD206-positive M2 microglia/macrophages, which later shifted towards iNOS- and CD16/32-positive M1 microglia/macrophages. There was a transient increase in levels of T helper 2 (Th2) cytokines at 18 weeks, whereas levels of Th1 cytokines as well as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and macrophage antigen (Mac) -2 progressively increased.Conclusions:Spinal cord compression was associated with a temporal M2 microglia/macrophage response, which may act as a possible repair or neuroprotective mechanism. However, the persistence of the neural insult also associated with persistent expression of Th1 cytokines and increased prevalence of activated M1 microglia/macrophages, which may lead to neuronal loss and demyelination despite the presence of neurotrophic factors. This understanding of the aetiopathology of chronic spinal cord compression is of importance in the development of new treatment targets in human disease. © 2013 Hirai et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacteria living on and in leaves and roots influence many aspects of plant health, so the extent of a plant's genetic control over its microbiota is of great interest to crop breeders and evolutionary biologists. Laboratory-based studies, because they poorly simulate true environmental heterogeneity, may misestimate or totally miss the influence of certain host genes on the microbiome. Here we report a large-scale field experiment to disentangle the effects of genotype, environment, age and year of harvest on bacterial communities associated with leaves and roots of Boechera stricta (Brassicaceae), a perennial wild mustard. Host genetic control of the microbiome is evident in leaves but not roots, and varies substantially among sites. Microbiome composition also shifts as plants age. Furthermore, a large proportion of leaf bacterial groups are shared with roots, suggesting inoculation from soil. Our results demonstrate how genotype-by-environment interactions contribute to the complexity of microbiome assembly in natural environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The science of genetics is undergoing a paradigm shift. Recent discoveries, including the activity of retrotransposons, the extent of copy number variations, somatic and chromosomal mosaicism, and the nature of the epigenome as a regulator of DNA expressivity, are challenging a series of dogmas concerning the nature of the genome and the relationship between genotype and phenotype. DNA, once held to be the unchanging template of heredity, now appears subject to a good deal of environmental change; considered to be identical in all cells and tissues of the body, there is growing evidence that somatic mosaicism is the normal human condition; and treated as the sole biological agent of heritability, we now know that the epigenome, which regulates gene expressivity, can be inherited via the germline. These developments are particularly significant for behavior genetics for at least three reasons: First, these phenomena appear to be particularly prevalent in the human brain, and likely are involved in much of human behavior; second, they have important implications for the validity of heritability and gene association studies, the methodologies that largely define the discipline of behavior genetics; and third, they appear to play a critical role in development during the perinatal period, and in enabling phenotypic plasticity in offspring in particular. I examine one of the central claims to emerge from the use of heritability studies in the behavioral sciences, the principle of “minimal shared maternal effects,” in light of the growing awareness that the maternal perinatal environment is a critical venue for the exercise of adaptive phenotypic plasticity. This consideration has important implications for both developmental and evolutionary biology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Cystic fibrosis (CF) is the most prevalent lethal autosomal recessive disease with a broad spectrum of phenotypes. Mutation of ΔF508 in the CFTR gene is the most important and lethal mutation in CF, which contains 70% of all predisposing mutations for CF worldwide. Objectives: Determining frequency of genotypes with ΔF508 mutation in CFTR gene, and evaluation of correlation between genotype and phenotype of Iranian patients with CF. Patients and Methods: Thirty six patients were included in this cross sectional study. ΔF508 mutations in both alleles of the CFTR gene were checked. Results: Among 36 pediatric patients, ΔF508 mutation was detected in 9 (25%) patients; 2 patients were heterozygous, and 7 patients homozygous for this mutation. From overall 72 tracked alleles, 11 (15.2%) were found to have ΔF508 mutations. Differences in prevalence of dyspnea and bronchiectasis were significant in homozygote group, compared with non-mutated group for ΔF508. Conclusions: It seems that more ΔF508 mutated alleles lead to more severe symptoms of CF.