953 resultados para Genome Annotation Assessment


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, we observed a significant increase of food fraud ranging from false label claims to the use of additives and fillers to increase profitability. Recently in 2013, horse and pig DNA were detected in beef products sold from several retailers. Mass spectrometry has become the workhorse in protein research and the detection of marker proteins could serve for both animal species and tissue authentication. Meat species authenticity will be performed using a well defined proteogenomic annotation, carefully chosen surrogate tryptic peptides and analysis using a hybrid quadrupole-Orbitrap mass spectrometer. Selected mammalian meat samples were homogenized, proteins were extracted and digested with trypsin. The samples were analyzed using a high-resolution mass spectrometer. The chromatography was achieved using a 30 minutes linear gradient along with a BioBasic C8 100 × 1 mm column at a flow rate of 75 µL/min. The mass spectrometer was operated in full-scan high resolution and accurate mass. MS/MS spectra were collected for selected proteotypic peptides. Muscular proteins were methodically analyzed in silico in order to generate tryptic peptide mass lists and theoretical MS/MS spectra. Following a comprehensive bottom-up proteomic analysis, we were able to detect and identify a proteotypic myoglobin tryptic peptide [120-134] for each species with observed m/z below 1.3 ppm compared to theoretical values. Moreover, proteotypic peptides from myosin-1, myosin-2 and -hemoglobin were also identified. This targeted method allowed a comprehensive meat speciation down to 1% (w/w) of undesired product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The tight junction (TJ) is one of the most important structures established during merozoite invasion of host cells and a large amount of proteins stored in Toxoplasma and Plasmodium parasites’ apical organelles are involved in forming the TJ. Plasmodium falciparum and Toxoplasma gondii apical membrane antigen 1 (AMA-1) and rhoptry neck proteins (RONs) are the two main TJ components. It has been shown that RON4 plays an essential role during merozoite and sporozoite invasion to target cells. This study has focused on characterizing a novel Plasmodium vivax rhoptry protein, RON4, which is homologous to PfRON4 and PkRON4. Methods: The ron4 gene was re-annotated in the P. vivax genome using various bioinformatics tools and taking PfRON4 and PkRON4 amino acid sequences as templates. Gene synteny, as well as identity and similarity values between open reading frames (ORFs) belonging to the three species were assessed. The gene transcription of pvron4, and the expression and localization of the encoded protein were also determined in the VCG-1 strain by molecular and immunological studies. Nucleotide and amino acid sequences obtained for pvron4 in VCG-1 were compared to those from strains coming from different geographical areas. Results: PvRON4 is a 733 amino acid long protein, which is encoded by three exons, having similar transcription and translation patterns to those reported for its homologue, PfRON4. Sequencing PvRON4 from the VCG-1 strain and comparing it to P. vivax strains from different geographical locations has shown two conserved regions separated by a low complexity variable region, possibly acting as a “smokescreen”. PvRON4 contains a predicted signal sequence, a coiled-coil α-helical motif, two tandem repeats and six conserved cysteines towards the carboxyterminus and is a soluble protein lacking predicted transmembranal domains or a GPI anchor. Indirect immunofluorescence assays have shown that PvRON4 is expressed at the apical end of schizonts and co-localizes at the rhoptry neck with PvRON2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wheat, although moderately tolerant to salt, can not be cultivated in many areas. However, in the triticeae tribe, some of the wild wheat relatives are highly tolerant, e.g. Thinopyrum bessarabicum, which grows on the sea shore. Eight primary hexaploid tritipyrum lines, amphiploids between Triticum durum and Thinopyrum bessarabicum have been produced which can set seed in at least 250 mM NaCl. These tritipyrums (2n=6x=42, AABBEbEb) due to reasons such as brittle rachis, continuous production of tillers, late maturity, tall stature and meiotic instability will not fulfill the requirements of a successful commercial salt tolerant crop. To overcome such problems the substituted tritipyrum, in which selected Eb chromosomes are replaced by D genome chromosomes of 6x wheat, was produced from 6x tritipyrum x 6x wheat hybrids (F1: 2n=6x=42, AABBDEb) followed by selfing and backcrossing with 6x tritipyrum. The fertile plants among the above progenies were screened by the genomic fluorescent in situ hybridization technique to identify their Eb and D chromosome constitution. This study showed that producing tritiprum with variable numbers of Eb and D genome chromosomes is feasible and that FISH is a useful technique for determining the number of Eb chromosomes present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blumeria graminis is an economically important obligate plant-pathogenic fungus, whose entire genome was recently sequenced and manually annotated using ab initio in silico predictions [7]. Employing large scale proteogenomic analysis we are now able to verify independently the existence of proteins predicted by 24% of open reading frame models. We compared the haustoria and sporulating hyphae proteomes and identified 71 proteins exclusively in haustoria, the feeding and effector-delivery organs of the pathogen. These proteins are ‘significantly smaller than the rest of the protein pool and predicted to be secreted. Most do not share any similarities with Swiss–Prot or Trembl entries nor possess any identifiable Pfam domains. We used a novel automated prediction pipeline to model the 3D structures of the proteins, identify putative ligand binding sites and predict regions of intrinsic disorder. This revealed that the protein set found exclusively in haustoria is significantly less disordered than the rest of the identified Blumeria proteins or random (and representative) protein sets generated from the yeast proteome. For most of the haustorial proteins with unknown functions no good templates could be found, from which to generate high quality models. Thus, these unknown proteins present potentially new protein folds that can be specific to the interaction of the pathogen with its host.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The past years have shown an enormous advancement in sequencing and array-based technologies, producing supplementary or alternative views of the genome stored in various formats and databases. Their sheer volume and different data scope pose a challenge to jointly visualize and integrate diverse data types. We present AmalgamScope a new interactive software tool focusing on assisting scientists with the annotation of the human genome and particularly the integration of the annotation files from multiple data types, using gene identifiers and genomic coordinates. Supported platforms include next-generation sequencing and microarray technologies. The available features of AmalgamScope range from the annotation of diverse data types across the human genome to integration of the data based on the annotational information and visualization of the merged files within chromosomal regions or the whole genome. Additionally, users can define custom transcriptome library files for any species and use the file exchanging distant server options of the tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To contribute to our understanding of the genome complexity of sugarcane, we undertook a large-scale expressed sequence tag (EST),program. More than 260,000 cDNA clones were partially sequenced from 26 standard cDNA libraries generated from different sugarcane tissues. After the processing of the sequences, 237,954 high-quality ESTs were identified. These ESTs were assembled into 43,141 putative transcripts. of the assembled sequences, 35.6% presented no matches with existing sequences in public databases. A global analysis of the whole SUCEST data set indicated that 14,409 assembled sequences (33% of the total) contained at least one cDNA clone with a full-length insert. Annotation of the 43,141 assembled sequences associated almost 50% of the putative identified sugarcane genes with protein metabolism, cellular communication/signal transduction, bioenergetics, and stress responses. Inspection of the translated assembled sequences for conserved protein domains revealed 40,821 amino acid sequences with 1415 Pfam domains. Reassembling the consensus sequences of the 43,141 transcripts revealed a 22% redundancy in the first assembling. This indicated that possibly 33,620 unique genes had been identified and indicated that >90% of the sugarcane expressed genes were tagged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although many Brazilian sugar mills initiate the fermentation process by inoculating selected commercial Saccharomyces cerevisiae strains, the unsterile conditions of the industrial sugar cane ethanol fermentation process permit the constant entry of native yeast strains. Certain of those native strains are better adapted and tend to predominate over the initial strain, which may cause problems during fermentation. In the industrial fermentation process, yeast cells are often exposed to stressful environmental conditions, including prolonged cell recycling, ethanol toxicity and osmotic, oxidative or temperature stress. Little is known about these S. cerevisiae strains, although recent studies have demonstrated that heterogeneous genome architecture is exhibited by some selected well-adapted Brazilian indigenous yeast strains that display high performance in bioethanol fermentation. In this study, 11 microsatellite markers were used to assess the genetic diversity and population structure of the native autochthonous S. cerevisiae strains in various Brazilian sugar mills. The resulting multilocus data were used to build a similarity-based phenetic tree and to perform a Bayesian population structure analysis. The tree revealed the presence of great genetic diversity among the strains, which were arranged according to the place of origin and the collection year. The population structure analysis revealed genotypic differences among populations; in certain populations, these genotypic differences are combined to yield notably genotypically diverse individuals. The high yeast diversity observed among native S. cerevisiae strains provides new insights on the use of autochthonous high-fitness strains with industrial characteristics as starter cultures at bioethanol plants. © 2013 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The length of the post-partum anoestrous interval affects reproductive efficiency in many tropical beef cattle herds. In this study, results from genome-wide association studies (Experiment 1: GWAS) and gene expression (Experiment 2: microarray) were combined in a systems approach to reveal genetic markers, genes and pathways underlying the physiology of post-partum anoestrus in tropically adapted cattle. The microarray study measured the expression of 13,964 genes in the hypothalamus of Brahman cows. A total of 366 genes were differentially expressed (DE) in the post-partum period, when acyclic cows were compared to cows that had resumed ovarian cycles. Associated markers (P < 0.05) from a high density GWAS pointed to 2829 genes that were associated with post-partum anoestrous interval (PPAI) in two populations of beef cattle: Brahman and Tropical composite. Together the experiments provided evidence for 63 genes that are likely to influence the resumption of ovulation post-partum in tropically adapted beef cattle. Functional annotation analysis revealed that some of the 63 genes have known roles in hormonal activity, energy balance and neuronal synapse plasticity. Polymorphisms within candidate genes identified by this systems approach could have biological significance in post-partum anoestrus and help select Zebu (Bos indicus) influenced cattle with genetic potential for shorter post-partum anoestrus. Crown Copyright (C) 2014 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of relatively low numbers of sires in cattle breeding programs, particularly on those for carcass and weight traits in Nellore beef cattle (Bos indicus) in Brazil, has always raised concerns about inbreeding, which affects conservation of genetic resources and sustainability of this breed. Here, we investigated the distribution of autozygosity levels based on runs of homozygosity (ROH) in a sample of 1,278 Nellore cows, genotyped for over 777,000 SNPs. We found ROH segments larger than 10 Mb in over 70% of the samples, representing signatures most likely related to the recent massive use of few sires. However, the average genome coverage by ROH (>1 Mb) was lower than previously reported for other cattle breeds (4.58%). In spite of 99.98% of the SNPs being included within a ROH in at least one individual, only 19.37% of the markers were encompassed by common ROH, suggesting that the ongoing selection for weight, carcass and reproductive traits in this population is too recent to have produced selection signatures in the form of ROH. Three short-range highly prevalent ROH autosomal hotspots (occurring in over 50% of the samples) were observed, indicating candidate regions most likely under selection since before the foundation of Brazilian Nellore cattle. The putative signatures of selection on chromosomes 4, 7, and 12 may be involved in resistance to infectious diseases and fertility, and should be subject of future investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sweet sorghum, a botanical variety of sorghum is a potential source of bioenergy because high sugar levels accumulate in its stalks. The objectives of this study were to explore the global diversity of sweet sorghum germplasm, and map the genomic regions that are associated with bioenergy traits. In assessing diversity, 142 sweet sorghum accessions were evaluated with three marker types (SSR, SRAP, and morphological markers) to determine the degree of relatedness among the accessions. The traits measured (anthesis date [AD], plant height [PH], biomass yield [BY], and moisture content [MC]) were all significantly different (P<0.05) among accessions. Morphological marker clustered the accessions into five groups based on PH, MC and AD. The three traits accounted for 92.5% of the variation. There were four and five groups based on SRAP and SSR data respectively classifying accessions mainly on their origin or breeding history. The observed difference between SSR and SRAP based clusters could be attributed to the difference in marker type. SSRs amplify any region of the genome whereas SRAP amplify the open reading frames and promoter regions. Comparing the three marker-type clusters, the markers complimented each other in grouping accessions and would be valuable in assisting breeders to select appropriate lines for crossing. In evaluating QTLs that are associated with bioenergy traits, 165 recombinant inbred lines (RILs) were planted at four environments in Nebraska. A genetic linkage map constructed spanned a length of 1541.3 cM, and generated 18 linkage groups that aligned to the 10 sorghum chromosomes. Fourteen QTLs (6 for brix, 3 for BY, 2 each for AD and MC, and 1 for PH) were mapped. QTLs for the traits that were significantly correlated, colocalized in two clusters on linkage group Sbi01b. Both parents contributed beneficial alleles for most of traits measured, supporting the transgressive segregation in this population. Additional work is needed on exploiting the usefulness of chromosome 1 in breeding sorghum for bioenergy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibrio campbellii PEL22A was isolated from open ocean water in the Abrolhos Bank. The genome of PEL22A consists of 6,788,038 bp (the GC content is 45%). The number of coding sequences (CDS) is 6,359, as determined according to the Rapid Annotation using Subsystem Technology (RAST) server. The number of ribosomal genes is 80, of which 68 are tRNAs and 12 are rRNAs. V. campbellii PEL22A contains genes related to virulence and fitness, including a complete proteorhodopsin cluster, complete type II and III secretion systems, incomplete type I, IV, and VI secretion systems, a hemolysin, and CTX Phi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exiguobacterium antarcticum is a psychotropic bacterium isolated for the first time from microbial mats of Lake Fryxell in Antarctica. Many organisms of the genus Exiguobacterium are extremophiles and have properties of biotechnological interest, e. g., the capacity to adapt to cold, which make this genus a target for discovering new enzymes, such as lipases and proteases, in addition to improving our understanding of the mechanisms of adaptation and survival at low temperatures. This study presents the genome of E. antarcticum B7, isolated from a biofilm sample of Ginger Lake on King George Island, Antarctic peninsula.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genome-wide association studies have failed to establish common variant risk for the majority of common human diseases. The underlying reasons for this failure are explained by recent studies of resequencing and comparison of over 1200 human genomes and 10 000 exomes, together with the delineation of DNA methylation patterns (epigenome) and full characterization of coding and noncoding RNAs (transcriptome) being transcribed. These studies have provided the most comprehensive catalogues of functional elements and genetic variants that are now available for global integrative analysis and experimental validation in prospective cohort studies. With these datasets, researchers will have unparalleled opportunities for the alignment, mining, and testing of hypotheses for the roles of specific genetic variants, including copy number variations, single nucleotide polymorphisms, and indels as the cause of specific phenotypes and diseases. Through the use of next-generation sequencing technologies for genotyping and standardized ontological annotation to systematically analyze the effects of genomic variation on humans and model organism phenotypes, we will be able to find candidate genes and new clues for disease’s etiology and treatment. This article describes essential concepts in genetics and genomic technologies as well as the emerging computational framework to comprehensively search websites and platforms available for the analysis and interpretation of genomic data.