994 resultados para Genetic Vectors
Resumo:
The generation of a high productivity cell line is a critical step in the production of a therapeutic protein. Many innovative engineering strategies have been devised in order to maximize the expression rate of production cells for increased process efficiency. Less effort has focused on improvements to the cell line generation process, which is typically long and laborious when using mammalian cells. Based on unexpected findings when generating stable CHO cell lines expressing human IL-17F, we studied the benefit of expressing this protein during the establishment of production cell lines. We demonstrate that IL-17F expression enhances the rate of selection and overall number of selected cell lines as well as their transgene expression levels. We also show that this benefit is observed with different parental CHO cell lines and selection systems. Furthermore, IL-17F expression improves the efficiency of cell line subcloning processes. IL-17F can therefore be exploited in a standard manufacturing process to obtain higher productivity clones in a reduced time frame.
Resumo:
Matrix attachment regions (MARs) are DNA sequences that may be involved in anchoring DNA/chromatin to the nuclear matrix and they have been described in both mammalian and plant species. MARs possess a number of features that facilitate the opening and maintenance of euchromatin. When incorporated into viral or non-viral vectors MARs can increase transgene expression and limit position-effects. They have been used extensively to improve transgene expression and recombinant protein production and promising studies on the potential use of MAR elements for mammalian gene therapy have appeared. These illustrate how MARs may be used to mediate sustained or higher levels of expression of therapeutic genes and/or to reduce the viral vector multiplicity of infection required to achieve consistent expression. More recently, the discovery of potent MAR elements and the development of improved vectors for transgene delivery, notably non-viral episomal vectors, has strengthened interest in their use to mediate expression of therapeutic transgenes. This article will describe the progress made in this field, and it will discuss future directions and issues to be addressed.
Resumo:
Proneuropeptide Y (ProNPY) undergoes cleavage at a single dibasic site Lys38-Arg39 resulting in the formation of 1-39 amino acid NPY which is further processed successively by carboxypeptidase-like and peptidylglycine alpha-amidating monooxygenase enzymes. To investigate whether prohormone convertases are involved in ProNPY processing, a vaccinia virus derived expression system was used to coexpress recombinant ProNPY with each of the prohormone convertases PC1/3, PC2, furin, and PACE4 in Neuro2A and NIH 3T3 cell lines as regulated neuroendocrine and constitutive prototype cell lines, respectively. The analysis of processed products shows that only PC1/3 generates NPY in NIH 3T3 cells while both PC1/3 and PC2 are able to generate NPY in Neuro2A cells. The convertases furin and PACE4 are unable to process ProNPY in either cell line. Moreover, comparative in vitro cleavage of recombinant NPY precursor by the enzymes PC1/3, PC2 and furin shows that only PC1/3 and PC2 are involved in specific cleavage of the dibasic site. Kinetic studies demonstrate that PC1/3 cleaves ProNPY more efficiently than PC2. The main difference between the cleavage efficiency is observed in the Vmax values whereas no major difference is observed in Km values. In addition the cleavage by PC1/3 and PC2 of two peptides reproducing the dibasic cleavage site with different amino acid sequence lengths namely (20-49)-ProNPY and (28-43)-ProNPY was studied. These shortened ProNPY substrates, when recognized by the enzymes, are more efficiently cleaved than ProNPY itself. The shortest peptide is not cleaved by PC2 while it is by PC1/3. On the basis of these observations it is proposed, first, that the constitutive secreted NPY does not result from the cleavage carried out by ubiquitously expressed enzymes furin and PACE4; second, that PC1/3 and PC2 are not equipotent in the cleavage of ProNPY; and third, substrate peptide length might discriminate PC1/3 and PC2 processing activity.
Resumo:
Each year, approximately five million people die worldwide from putatively vaccine-preventable mucosally transmitted diseases. With respect to mass vaccination campaigns, one strategy to cope with this formidable challenge is aerosol vaccine delivery, which offers potential safety, logistical, and cost-saving advantages over traditional vaccination routes. Additionally, aerosol vaccination may elicit pivotal mucosal immune responses that could contain or eliminate mucosally transmitted pathogens in a preventative or therapeutic vaccine context. In this current preclinical non-human primate investigation, we demonstrate the feasibility of aerosol vaccination with the recombinant poxvirus-based vaccine vectors NYVAC and MVA. Real-time in vivo scintigraphy experiments with radiolabeled, aerosol-administered NYVAC-C (Clade C, HIV-1 vaccine) and MVA-HPV vaccines revealed consistent mucosal delivery to the respiratory tract. Furthermore, aerosol delivery of the vaccines was safe, inducing no vaccine-associated pathology, in particular in the brain and lungs, and was immunogenic. Administration of a DNA-C/NYVAC-C prime/boost regime resulted in both systemic and anal-genital HIV-specific immune responses that were still detectable 5 months after immunization. Thus, aerosol vaccination with NYVAC and MVA vectored vaccines constitutes a tool for large-scale vaccine efforts against mucosally transmitted pathogens.
Resumo:
PURPOSE. Knowledge of genetic factors predisposing to age-related cataract is very limited. The aim of this study was to identify DNA sequences that either lead to or predispose for this disease. METHODS. The candidate gene SLC16A12, which encodes a solute carrier of the monocarboxylate transporter family, was sequenced in 484 patients with cataract (134 with juvenile cataract, 350 with age-related cataract) and 190 control subjects. Expression studies included luciferase reporter assay and RT-PCR experiments. RESULTS. One patient with age-related cataract showed a novel heterozygous mutation (c.-17A>G) in the 5'untranslated region (5'UTR). This mutation is in cis with the minor G-allele of the single nucleotide polymorphism (SNP) rs3740030 (c.-42T/G), also within the 5'UTR. Using a luciferase reporter assay system, a construct with the patient's haplotype caused a significant upregulation of luciferase activity. In comparison, the SNP G-allele alone promoted less activity, but that amount was still significantly higher than the amount of the common T-allele. Analysis of SLC16A12 transcripts in surrogate tissue demonstrated striking allele-specific differences causing 5'UTR heterogeneity with respect to sequence and quantity. These differences in gene expression were mirrored in an allele-specific predisposition to age-related cataract, as determined in a Swiss population (odds ratio approximately 2.2; confidence intervals, 1.23-4.3). CONCLUSIONS. The monocarboxylate transporter SLC16A12 may contribute to age-related cataract. Sequences within the 5'UTR modulate translational efficiency with pathogenic consequences.
Resumo:
Transfection with polyethylenimine (PEI) was evaluated as a method for the generation of recombinant Chinese hamster ovary (CHO DG44) cell lines by direct comparison with calcium phosphate-DNA coprecipitation (CaPO4) using both green fluorescent protein (GFP) and a monoclonal antibody as reporter proteins. Following transfection with a GFP expression vector, the proportion of GFP-positive cells as determined by flow cytometry was fourfold higher for the PEI transfection as compared to the CaPO4 transfection. However, the mean level of transient GFP expression for the cells with the highest level of fluorescence was twofold greater for the CaPO4 transfection. Fluorescence in situ hybridization on metaphase chromosomes from pools of cells grown under selective pressure demonstrated that plasmid integration always occurred at a single site regardless of the transfection method. Importantly, the copy number of integrated plasmids was measurably higher in cells transfected with CaPO4. The efficiency of recombinant cell line recovery under selective pressure was fivefold higher following PEI transfection, but the average specific productivity of a recombinant antibody was about twofold higher for the CaPO4-derived cell lines. Nevertheless, no difference between the two transfection methods was observed in terms of the stability of protein production. These results demonstrated the feasibility of generating recombinant CHO-derived cell lines by PEI transfection. However, this method appeared inferior to CaPO4 transfection with regard to the specific productivity of the recovered cell lines.
Resumo:
Dystrophin mediates a physical link between the cytoskeleton of muscle fibers and the extracellular matrix, and its absence leads to muscle degeneration and dystrophy. In this article, we show that the lack of dystrophin affects the elasticity of individual fibers within muscle tissue explants, as probed using atomic force microscopy (AFM), providing a sensitive and quantitative description of the properties of normal and dystrophic myofibers. The rescue of dystrophin expression by exon skipping or by the ectopic expression of the utrophin analogue normalized the elasticity of dystrophic muscles, and these effects were commensurate to the functional recovery of whole muscle strength. However, a more homogeneous and widespread restoration of normal elasticity was obtained by the exon-skipping approach when comparing individual myofibers. AFM may thus provide a quantification of the functional benefit of gene therapies from live tissues coupled to single-cell resolution.
Resumo:
Developmentally regulated mechanisms involving alternative RNA splicing and/or polyadenylation, as well as transcription termination, are implicated in controlling the levels of secreted mu (mu s), membrane mu (mu m) and delta immunoglobulin (Ig) heavy chain mRNAs during B cell differentiation (mu gene encodes the mu heavy chain). Using expression vectors constructed with genomic DNA segments composed of the mu m polyadenylation signal region, we analyzed poly(A) site utilization and termination of transcription in stably transfected myeloma cells and in murine fibroblast L cells. We found that the gene segment containing the mu m poly(A) signals, along with 536 bp of downstream flanking sequence, acted as a transcription terminator in both myeloma cells and L cell fibroblasts. Neither a 141-bp DNA fragment (which directed efficient polyadenylation at the mu m site), nor the 536-bp flanking nucleotide sequence alone, were sufficient to obtain a similar regulation. This shows that the mu m poly(A) region plays a central role in controlling developmentally regulated transcription termination by blocking downstream delta gene expression. Because this gene segment exhibited the same RNA processing and termination activities in fibroblasts, it appears that these processes are not tissue-specific.
Resumo:
In the last two decades, anti-cancer vaccines have yielded disappointing clinical results despite the fact that high numbers of self/tumor-specific T cells can be elicited in immunized patients. Understanding the reasons behind this lack of efficacy is critical in order to design better treatment regimes. Recombinant lentivectors (rLVs) have been successfully used to induce antigen-specific T cells to foreign or mutated tumor antigens. Here, we show that rLV expressing a murine nonmutated self/tumor antigen efficiently primes large numbers of self/tumor-specific CD8(+) T cells. In spite of the large number of tumor-specific T cells, however, no anti-tumor activity could be measured in a therapeutic setting, in mice vaccinated with rLV. Accumulating evidence shows that, in the presence of malignancies, inhibition of T-cell activity may predominate overstimulation. Analysis of tumor-infiltrating lymphocytes revealed that specific anti-tumor CD8(+) T cells fail to produce cytokines and express high levels of inhibitory receptors such as programmed death (PD)-1. Association of active immunization with chemotherapy or antibodies that block inhibitory pathways often leads to better anti-tumor effects. We show here that combining rLV vaccination with either cyclophosphamide or PD-1 and PD-L1 blocking antibodies enhances rLV vaccination efficacy and improves anti-tumor immunity.
Resumo:
PURPOSE OF REVIEW: In this review, we will provide the scientific rationale for the use of poxvirus vectors in the field of HIV vaccines, the immunological profile of the vaccine-induced immune responses, an update on the current use of poxvirus vector-based vaccines in HIV vaccine clinical trials, and the development of new modified poxvirus vectors with improved immunological profile. RECENT FINDINGS: An Ad5-HIV vaccine was tested in a phase IIb clinical trial (known as the Step trial). Vaccinations in the Step trial were discontinued because the vaccine did not show any effect on acquisition of infection and on viral load. After the disappointing failure of the Step trial, the field of HIV vaccine has regained enthusiasm and vigour due to the promising protective effect observed in the phase III efficacy trial (known as RV-144) performed in Thailand which has tested a poxvirus-gp120 combination. SUMMARY: The RV-144 phase III has provided for the first time evidence that an HIV vaccine can prevent HIV infection. The results from the RV-144 trial are providing the scientific rationale for the future development of the HIV vaccine field and for designing future efficacy trials.
Resumo:
In order to induce a therapeutic T lymphocyte response, recombinant viral vaccines are designed to target professional antigen-presenting cells (APC) such as dendritic cells (DC). A key requirement for their use in humans is safe and efficient gene delivery. The present study assesses third-generation lentivectors with respect to their ability to transduce human and mouse DC and to induce antigen-specific CD8+ T-cell responses. We demonstrate that third-generation lentivectors transduce DC with a superior efficiency compared to adenovectors. The transfer of DC transduced with a recombinant lentivector encoding an antigenic epitope resulted in a strong specific CD8+ T-cell response in mice. The occurrence of lower proportions of nonspecifically activated CD8+ cells suggests a lower antivector immunity of lentivector compared to adenovector. Thus, lentivectors, in addition to their promise for gene therapy of brain disorders might also be suitable for immunotherapy.
Resumo:
PURPOSE: To study VP22 light controlled delivery of antisense oligonucleotide (ODN) to ocular cells in vitro and in vivo. METHODS: The C-terminal half of VP22 was expressed in Escherichia coli, purified and mixed with 20 mer phosphorothioate oligonucleotides (ODNs) to form light sensitive complex particles (vectosomes). Uptake of vectosomes and light induced redistribution of ODNs in human choroid melanoma cells (OCM-1) and in human retinal pigment epithelial cells (ARPE-19) were studied by confocal and electron microscopy. The effect of vectosomes formed with an antisense ODN corresponding to the 3'-untranslated region of the human c-raf kinase gene on the viability and the proliferation of OCM-1 cells was assessed before and after illumination. Cells incubated with vectosomes formed with a mismatched ODN, a free antisense ODN or a free mismatched ODN served as controls. White light transscleral illumination was carried out 24 h after the intravitreal injection of vectosomes in rat eyes. The distribution of fluorescent vectosomes and free fluorescent ODN was evaluated on cryosections by fluorescence microscopy before, and 1 h after illumination. RESULTS: Overnight incubation of human OCM-1 and ARPE-19 cells with vectosomes lead to intracellular internalization of the vectosomes. When not illuminated, internalized vectosomes remained stable within the cell cytoplasm. Disruption of vectosomes and release of the complexed ODN was induced by illumination of the cultures with a cold white light or a laser beam. In vitro, up to 60% inhibition of OCM-1 cell proliferation was observed in illuminated cultures incubated with vectosomes formed with antisense c-raf ODN. No inhibitory effect on the OCM-1 cell proliferation was observed in the absence of illumination or when the cells are incubated with a free antisense c-raf ODN and illuminated. In vivo, 24 h after intravitreal injection, vectosomes were observed within the various retinal layers accumulating in the cytoplasm of RPE cells. Transscleral illumination of the injected eyes with a cold white light induced disruption of the vectosomes and a preferential localization of the "released" ODNs within the cell nuclei of the ganglion cell layer, the inner nuclear layer and the RPE cells. CONCLUSIONS: In vitro, VP22 light controlled delivery of ODNs to ocular cells nuclei was feasible using white light or laser illumination. In vivo, a single intravitreal injection of vectosomes, followed by transscleral illumination allowed for the delivery of free ODNs to retinal and RPE cells.
Resumo:
PURPOSE: To evaluate the safety and potential use of poly(lactic) acid (PLA) and poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) as vectors for gene transfer to RPE cells. METHODS: Experiments were conducted with primary bovine RPE cells and with the ARPE-19 human RPE cell line. Rhodamine loaded NPs were used to study factors influencing the internalization process by the various RPE cells: concentrations of NPs, duration of contact time, stage of cell culture and ambient temperature. The extent of NPs internalization was evaluated by fluorescence and phase microscopy. Potential NP toxicity was measured by the trypan blue exclusion dye test and the MTT method. Green fluorescent protein (GFP) plasmid or red nuclear fluorescent protein (RNFP) plasmid were sequestered in NPs. The ability ot these "loaded" NPs to generate gene transfection and protein expression in RPE cells was assessed both in vivo and in vitro by fluorescence and confocal microscopy. RESULTS: The extent of NP internalization in cultured cells increases with their concentration reaching a plateau at 1 mg/ml and a contact time of up to 6 h. Temperature and culture stage did not influence the in vitro internalization process. No toxic effects on RPE cells could be detected when these were incubated with up to 4 mg/ml of NPs. In human and bovine RPE cells incubated with GFP loaded NPs, cytoplasmic green fluorescence was observed in 14+/-1.65% of the cultured cells. Incubation with RNFP loaded NPs yielded a nuclear red fluorescence in 18.9+/-1.6% of the cells. These percentage levels of expression initially detected after 48 h of incubation remained unchanged during the following 8 additional days in culture. No significant differences in the extent of cytoplasm or nuclear fluorescence expression were observed between bovine or human RPE cultured cells. In vivo, a preferential RNFP expression within the RPE cell layer was detected after intra vitreous injection of RNFP plasmid loaded NPs. CONCLUSIONS: The ability of PLGA NPs to sequester plasmids, their nontoxic characteristics, and rapid internalization enables gene transfer and expression in RPE cells. These findings may be of potential use when designing future gene therapy strategies for ocular diseases of the posterior segment.
Resumo:
OBJECTIVE: Interleukin-1 (IL-1) mediates ischemia-reperfusion injury and graft inflammation after heart transplantation. IL-1 affects target cells through two distinct types of transmembrane receptors, type-1 receptor (IL-1R1), which transduces the signal, and the non-signaling type-2 receptor (IL-1R2), which acts as a ligand sink that subtracts IL-1beta from IL-1R1. We analyzed the efficacy of adenovirus (Ad)-mediated gene transfer of a soluble IL-1R2-Ig fusion protein in delaying cardiac allograft rejection and the mechanisms underlying the protective effect. METHODS: IL-1 inhibition by IL-1R2-Ig was tested using an in vitro functional assay whereby endothelial cells preincubated with AdIL-1R2-Ig or control virus were stimulated with recombinant IL-1beta or tumor necrosis factor-alpha (TNF-alpha), and urokinase-type plasminogen activator (u-PA) induction was measured by zymography. AdIL-1R2-Ig was delivered to F344 rat donor hearts ex vivo, which were placed in the abdominal position in LEW hosts. Intragraft inflammatory cell infiltrates and proinflammatory cytokine expression were analyzed by immunohistochemistry and real-time reverse transcriptase-polymerase chain reaction (RT-PCR), respectively. RESULTS: IL-1R2-Ig specifically inhibited IL-1beta-induced u-PA responses in vitro. IL-1R2-Ig gene transfer reduced intragraft monocytes/macrophages and CD4(+) cell infiltrates (p<0.05), TNF-alpha and transforming growth factor-beta (TGF-beta) expression (p<0.05), and prolonged graft survival (15.6+/-5.7 vs 10.3+/-2.5 days with control vector and 10.1+/-2.1 days with buffer alone; p<0.01). AdIL-1R2-Ig combined with a subtherapeutic regimen of cyclosporin A (CsA) was superior to CsA alone (19.4+/-3.0 vs 15.9+/-1.8 days; p<0.05). CONCLUSIONS: Soluble IL-1 type-2 receptor gene transfer attenuates cardiac allograft rejection in a rat model. IL-1 inhibition may be useful as an adjuvant therapy in heart transplantation.
Resumo:
Non-viral vectors for potential gene replacement and therapy have been developed in order to overcome the drawbacks of viral vectors. The diversity of non-viral vectors allows for a wide range of various products, flexibility of application, ease of use, low-cost of production and enhanced "genomic" safety. Using non-viral strategies, oligonucleotides (ODNs) can be delivered naked (less efficient) or entrapped in cationic lipids, polymers or peptides forming slow release delivery systems, which can be adapted according to the organ targeted and the therapy purposes. Tissue and cell internalization can be further enhanced by changing by physical or chemical means. Moreover, a specific vector can be selected according to disease course and intensity of manifestations fulfilling specific requirements such as the duration of drug release and its level along with cells and tissues specific targeting. From accumulating knowledge and experience, it appears that combination of several non-viral techniques may increase the efficacy and ensure the safety of these evolving and interesting gene therapy strategies.