922 resultados para Genetic Algorithms and Simulated Annealing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

At present, all methods in Evolutionary Computation are bioinspired by the fundamental principles of neo-Darwinism, as well as by a vertical gene transfer. Virus transduction is one of the key mechanisms of horizontal gene propagation in microorganisms (e.g. bacteria). In the present paper, we model and simulate a transduction operator, exploring the possible role and usefulness of transduction in a genetic algorithm. The genetic algorithm including transduction has been named PETRI (abbreviation of Promoting Evolution Through Reiterated Infection). Our results showed how PETRI approaches higher fitness values as transduction probability comes close to 100%. The conclusion is that transduction improves the performance of a genetic algorithm, assuming a population divided among several sub-populations or ?bacterial colonies?.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multi-chromosome GA (Multi-GA) was developed, based upon concepts from the natural world, allowing improved flexibility in a number of areas including representation, genetic operators, their parameter rates and real world multi-dimensional applications. A series of experiments were conducted, comparing the performance of the Multi-GA to a traditional GA on a number of recognised and increasingly complex test optimisation surfaces, with promising results. Further experiments demonstrated the Multi-GA's flexibility through the use of non-binary chromosome representations and its applicability to dynamic parameterisation. A number of alternative and new methods of dynamic parameterisation were investigated, in addition to a new non-binary 'Quotient crossover' mechanism. Finally, the Multi-GA was applied to two real world problems, demonstrating its ability to handle mixed type chromosomes within an individual, the limited use of a chromosome level fitness function, the introduction of new genetic operators for structural self-adaptation and its viability as a serious real world analysis tool. The first problem involved optimum placement of computers within a building, allowing the Multi-GA to use multiple chromosomes with different type representations and different operators in a single individual. The second problem, commonly associated with Geographical Information Systems (GIS), required a spatial analysis location of the optimum number and distribution of retail sites over two different population grids. In applying the Multi-GA, two new genetic operators (addition and deletion) were developed and explored, resulting in the definition of a mechanism for self-modification of genetic material within the Multi-GA structure and a study of this behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho apresenta um estudo de caso das heurísticas Simulated Annealing e Algoritmo Genético para um problema de grande relevância encontrado no sistema portuário, o Problema de Alocação em Berços. Esse problema aborda a programação e a alocação de navios às áreas de atracação ao longo de um cais. A modelagem utilizada nesta pesquisa é apresentada por Mauri (2008) [28] que trata do problema como uma Problema de Roteamento de Veículos com Múltiplas Garagens e sem Janelas de Tempo. Foi desenvolvido um ambiente apropriado para testes de simulação, onde o cenário de análise foi constituido a partir de situações reais encontradas na programação de navios de um terminal de contêineres. Os testes computacionais realizados mostram a performance das heurísticas em relação a função objetivo e o tempo computacional, a m de avaliar qual das técnicas apresenta melhores resultados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the use of a hierarchical coevolutionary genetic algorithm under different partnering strategies. Cascading clusters of sub-populations are built from the bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations potentially search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the sub-populations on solution quality are examined for two constrained optimisation problems. We examine a number of recombination partnering strategies in the construction of higher-level individuals and a number of related schemes for evaluating sub-solutions. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract In this paper, we address the problem of picking a subset of bids in a general combinatorial auction so as to maximize the overall profit using the first-price model. This winner determination problem assumes that a single bidding round is held to determine both the winners and prices to be paid. We introduce six variants of biased random-key genetic algorithms for this problem. Three of them use a novel initialization technique that makes use of solutions of intermediate linear programming relaxations of an exact mixed integer-linear programming model as initial chromosomes of the population. An experimental evaluation compares the effectiveness of the proposed algorithms with the standard mixed linear integer programming formulation, a specialized exact algorithm, and the best-performing heuristics proposed for this problem. The proposed algorithms are competitive and offer strong results, mainly for large-scale auctions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voltage and current waveforms of a distribution or transmission power system are not pure sinusoids. There are distortions in these waveforms that can be represented as a combination of the fundamental frequency, harmonics and high frequency transients. This paper presents a novel approach to identifying harmonics in power system distorted waveforms. The proposed method is based on Genetic Algorithms, which is an optimization technique inspired by genetics and natural evolution. GOOAL, a specially designed intelligent algorithm for optimization problems, was successfully implemented and tested. Two kinds of representations concerning chromosomes are utilized: binary and real. The results show that the proposed method is more precise than the traditional Fourier Transform, especially considering the real representation of the chromosomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulated annealing (SA) is an optimization technique that can process cost functions with degrees of nonlinearities, discontinuities and stochasticity. It can process arbitrary boundary conditions and constraints imposed on these cost functions. The SA technique is applied to the problem of robot path planning. Three situations are considered here: the path is represented as a polyline; as a Bezier curve; and as a spline interpolated curve. In the proposed SA algorithm, the sensitivity of each continuous parameter is evaluated at each iteration increasing the number of accepted solutions. The sensitivity of each parameter is associated to its probability distribution in the definition of the next candidate. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, genetic algorithm (GA) is applied to the optimum design of reinforced concrete liquid retaining structures, which comprise three discrete design variables, including slab thickness, reinforcement diameter and reinforcement spacing. GA, being a search technique based on the mechanics of natural genetics, couples a Darwinian survival-of-the-fittest principle with a random yet structured information exchange amongst a population of artificial chromosomes. As a first step, a penalty-based strategy is entailed to transform the constrained design problem into an unconstrained problem, which is appropriate for GA application. A numerical example is then used to demonstrate strength and capability of the GA in this domain problem. It is shown that, only after the exploration of a minute portion of the search space, near-optimal solutions are obtained at an extremely converging speed. The method can be extended to application of even more complex optimization problems in other domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acceptance-probability-controlled simulated annealing with an adaptive move generation procedure, an optimization technique derived from the simulated annealing algorithm, is presented. The adaptive move generation procedure was compared against the random move generation procedure on seven multiminima test functions, as well as on the synthetic data, resembling the optical constants of a metal. In all cases the algorithm proved to have faster convergence and superior escaping from local minima. This algorithm was then applied to fit the model dielectric function to data for platinum and aluminum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of parameter-space size adjustment is pn,posed in order to enable successful application of genetic algorithms to continuous optimization problems. Performance of genetic algorithms with six different combinations of selection and reproduction mechanisms, with and without parameter-space size adjustment, were severely tested on eleven multiminima test functions. An algorithm with the best performance was employed for the determination of the model parameters of the optical constants of Pt, Ni and Cr.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivation: A consensus sequence for a family of related sequences is, as the name suggests, a sequence that captures the features common to most members of the family. Consensus sequences are important in various DNA sequencing applications and are a convenient way to characterize a family of molecules. Results: This paper describes a new algorithm for finding a consensus sequence, using the popular optimization method known as simulated annealing. Unlike the conventional approach of finding a consensus sequence by first forming a multiple sequence alignment, this algorithm searches for a sequence that minimises the sum of pairwise distances to each of the input sequences. The resulting consensus sequence can then be used to induce a multiple sequence alignment. The time required by the algorithm scales linearly with the number of input sequences and quadratically with the length of the consensus sequence. We present results demonstrating the high quality of the consensus sequences and alignments produced by the new algorithm. For comparison, we also present similar results obtained using ClustalW. The new algorithm outperforms ClustalW in many cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper delineates the development of a prototype hybrid knowledge-based system for the optimum design of liquid retaining structures by coupling the blackboard architecture, an expert system shell VISUAL RULE STUDIO and genetic algorithm (GA). Through custom-built interactive graphical user interfaces under a user-friendly environment, the user is directed throughout the design process, which includes preliminary design, load specification, model generation, finite element analysis, code compliance checking, and member sizing optimization. For structural optimization, GA is applied to the minimum cost design of structural systems with discrete reinforced concrete sections. The design of a typical example of the liquid retaining structure is illustrated. The results demonstrate extraordinarily converging speed as near-optimal solutions are acquired after merely exploration of a small portion of the search space. This system can act as a consultant to assist novice designers in the design of liquid retaining structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM is integrated with ALBidS, a system that provides several dynamic strategies for agents’ behavior. This paper presents a method that aims at enhancing ALBidS competence in endowing market players with adequate strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible actions. These actions are defined accordingly to the most probable points of bidding success. With the purpose of accelerating the convergence process, a simulated annealing based algorithm is included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The smart grid concept appears as a suitable solution to guarantee the power system operation in the new electricity paradigm with electricity markets and integration of large amounts of Distributed Energy Resources (DERs). Virtual Power Player (VPP) will have a significant importance in the management of a smart grid. In the context of this new paradigm, Electric Vehicles (EVs) rise as a good available resource to be used as a DER by a VPP. This paper presents the application of the Simulated Annealing (SA) technique to solve the Energy Resource Management (ERM) of a VPP. It is also presented a new heuristic approach to intelligently handle the charge and discharge of the EVs. This heuristic process is incorporated in the SA technique, in order to improve the results of the ERM. The case study shows the results of the ERM for a 33-bus distribution network with three different EVs penetration levels, i. e., with 1000, 2000 and 3000 EVs. The results of the proposed adaptation of the SA technique are compared with a previous SA version and a deterministic technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a simulated annealing (SA) approach to address energy resources management from the point of view of a virtual power player (VPP) operating in a smart grid. Distributed generation, demand response, and gridable vehicles are intelligently managed on a multiperiod basis according to V2G user´s profiles and requirements. Apart from using the aggregated resources, the VPP can also purchase additional energy from a set of external suppliers. The paper includes a case study for a 33 bus distribution network with 66 generators, 32 loads, and 1000 gridable vehicles. The results of the SA approach are compared with a methodology based on mixed-integer nonlinear programming. A variation of this method, using ac load flow, is also used and the results are compared with the SA solution using network simulation. The proposed SA approach proved to be able to obtain good solutions in low execution times, providing VPPs with suitable decision support for the management of a large number of distributed resources.