900 resultados para Generalized Gaussian-noise
Resumo:
Cochlear implants are prosthetic devices used to provide hearing to people who would otherwise be profoundly deaf. The deliberate addition of noise to the electrode signals could increase the amount of information transmitted, but standard cochlear implants do not replicate the noise characteristic of normal hearing because if noise is added in an uncontrolled manner with a limited number of electrodes then it will almost certainly lead to worse performance. Only if partially independent stochastic activity can be achieved in each nerve fibre can mechanisms like suprathreshold stochastic resonance be effective. We are investigating the use of stochastic beamforming to achieve greater independence. The strategy involves presenting each electrode with a linear combination of independent Gaussian noise sources. Because the cochlea is filled with conductive salt solutions, the noise currents from the electrodes interact and the effective stimulus for each nerve fibre will therefore be a different weighted sum of the noise sources. To some extent therefore, the effective stimulus for a nerve fibre will be independent of the effective stimulus of neighbouring fibres. For a particular patient, the electrode position and the amount of current spread are fixed. The objective is therefore to find the linear combination of noise sources that leads to the greatest independence between nerve discharges. In this theoretical study we show that it is possible to get one independent point of excitation (one null) for each electrode and that stochastic beamforming can greatly decrease the correlation between the noise exciting different regions of the cochlea. © 2007 Copyright SPIE - The International Society for Optical Engineering.
Resumo:
Ernst Mach observed that light or dark bands could be seen at abrupt changes of luminance gradient in the absence of peaks or troughs in luminance. Many models of feature detection share the idea that bars, lines, and Mach bands are found at peaks and troughs in the output of even-symmetric spatial filters. Our experiments assessed the appearance of Mach bands (position and width) and the probability of seeing them on a novel set of generalized Gaussian edges. Mach band probability was mainly determined by the shape of the luminance profile and increased with the sharpness of its corners, controlled by a single parameter (n). Doubling or halving the size of the images had no significant effect. Variations in contrast (20%-80%) and duration (50-300 ms) had relatively minor effects. These results rule out the idea that Mach bands depend simply on the amplitude of the second derivative, but a multiscale model, based on Gaussian-smoothed first- and second-derivative filtering, can account accurately for the probability and perceived spatial layout of the bands. A key idea is that Mach band visibility depends on the ratio of second- to first-derivative responses at peaks in the second-derivative scale-space map. This ratio is approximately scale-invariant and increases with the sharpness of the corners of the luminance ramp, as observed. The edges of Mach bands pose a surprisingly difficult challenge for models of edge detection, but a nonlinear third-derivative operation is shown to predict the locations of Mach band edges strikingly well. Mach bands thus shed new light on the role of multiscale filtering systems in feature coding. © 2012 ARVO.
Resumo:
Since Shannon derived the seminal formula for the capacity of the additive linear white Gaussian noise channel, it has commonly been interpreted as the ultimate limit of error-free information transmission rate. However, the capacity above the corresponding linear channel limit can be achieved when noise is suppressed using nonlinear elements; that is, the regenerative function not available in linear systems. Regeneration is a fundamental concept that extends from biology to optical communications. All-optical regeneration of coherent signal has attracted particular attention. Surprisingly, the quantitative impact of regeneration on the Shannon capacity has remained unstudied. Here we propose a new method of designing regenerative transmission systems with capacity that is higher than the corresponding linear channel, and illustrate it by proposing application of the Fourier transform for efficient regeneration of multilevel multidimensional signals. The regenerative Shannon limit -the upper bound of regeneration efficiency -is derived. © 2014 Macmillan Publishers Limited. All rights reserved.
Resumo:
Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. Relationship between the free energy in statistical-mechanics approach and the mutual information used in the information-theory literature is established within a general framework; Gallager and MacKay-Neal codes are studied as specific examples of LDPC codes. It is shown that basic properties of these codes known for particular channels, including their potential to saturate Shannon's bound, hold for general symmetric channels. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel models.
Resumo:
Fluoroscopic images exhibit severe signal-dependent quantum noise, due to the reduced X-ray dose involved in image formation, that is generally modelled as Poisson-distributed. However, image gray-level transformations, commonly applied by fluoroscopic device to enhance contrast, modify the noise statistics and the relationship between image noise variance and expected pixel intensity. Image denoising is essential to improve quality of fluoroscopic images and their clinical information content. Simple average filters are commonly employed in real-time processing, but they tend to blur edges and details. An extensive comparison of advanced denoising algorithms specifically designed for both signal-dependent noise (AAS, BM3Dc, HHM, TLS) and independent additive noise (AV, BM3D, K-SVD) was presented. Simulated test images degraded by various levels of Poisson quantum noise and real clinical fluoroscopic images were considered. Typical gray-level transformations (e.g. white compression) were also applied in order to evaluate their effect on the denoising algorithms. Performances of the algorithms were evaluated in terms of peak-signal-to-noise ratio (PSNR), signal-to-noise ratio (SNR), mean square error (MSE), structural similarity index (SSIM) and computational time. On average, the filters designed for signal-dependent noise provided better image restorations than those assuming additive white Gaussian noise (AWGN). Collaborative denoising strategy was found to be the most effective in denoising of both simulated and real data, also in the presence of image gray-level transformations. White compression, by inherently reducing the greater noise variance of brighter pixels, appeared to support denoising algorithms in performing more effectively. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
A new generation of high-capacity WDM systems with extremely robust performance has been enabled by coherent transmission and digital signal processing. To facilitate widespread deployment of this technology, particularly in the metro space, new photonic components and subsystems are being developed to support cost-effective, compact, and scalable transceivers. We briefly review the recent progress in InP-based photonic components, and report numerical simulation results of an InP-based transceiver comprising a dual-polarization I/Q modulator and a commercial DSP ASIC. Predicted performance penalties due to the nonlinear response, lower bandwidth, and finite extinction ratio of these transceivers are less than 1 and 2 dB for 100-G PM-QPSK and 200-G PM-16QAM, respectively. Using the well-established Gaussian-Noise model, estimated system reach of 100-G PM-QPSK is greater than 600 km for typical ROADM-based metro-regional systems with internode losses up to 20 dB. © 1983-2012 IEEE.
Resumo:
We present the design of nonlinear regenerative communication channels that have capacity above the classical Shannon capacity of the linear additive white Gaussian noise channel. The upper bound for regeneration efficiency is found and the asymptotic behavior of the capacity in the saturation regime is derived. © 2013 IEEE.
Resumo:
In this talk we investigate the usage of spectrally shaped amplified spontaneous emission (ASE) in order to emulate highly dispersed wavelength division multiplexed (WDM) signals in an optical transmission system. Such a technique offers various simplifications to large scale WDM experiments. Not only does it offer a reduction in transmitter complexity, removing the need for multiple source lasers, it potentially reduces the test and measurement complexity by requiring only the centre channel of a WDM system to be measured in order to estimate WDM worst case performance. The use of ASE as a test and measurement tool is well established in optical communication systems and several measurement techniques will be discussed [1, 2]. One of the most prevalent uses of ASE is in the measurement of receiver sensitivity where ASE is introduced in order to degrade the optical signal to noise ratio (OSNR) and measure the resulting bit error rate (BER) at the receiver. From an analytical point of view noise has been used to emulate system performance, the Gaussian Noise model is used as an estimate of highly dispersed signals and has had consider- able interest [3]. The work to be presented here extends the use of ASE by using it as a metric to emulate highly dispersed WDM signals and in the process reduce WDM transmitter complexity and receiver measurement time in a lab environment. Results thus far have indicated [2] that such a transmitter configuration is consistent with an AWGN model for transmission, with modulation format complexity and nonlinearities playing a key role in estimating the performance of systems utilising the ASE channel emulation technique. We conclude this work by investigating techniques capable of characterising the nonlinear and damage limits of optical fibres and the resultant information capacity limits. REFERENCES McCarthy, M. E., N. Mac Suibhne, S. T. Le, P. Harper, and A. D. Ellis, “High spectral efficiency transmission emulation for non-linear transmission performance estimation for high order modulation formats," 2014 European Conference on IEEE Optical Communication (ECOC), 2014. 2. Ellis, A., N. Mac Suibhne, F. Gunning, and S. Sygletos, “Expressions for the nonlinear trans- mission performance of multi-mode optical fiber," Opt. Express, Vol. 21, 22834{22846, 2013. Vacondio, F., O. Rival, C. Simonneau, E. Grellier, A. Bononi, L. Lorcy, J. Antona, and S. Bigo, “On nonlinear distortions of highly dispersive optical coherent systems," Opt. Express, Vol. 20, 1022-1032, 2012.
Resumo:
Polynomial phase modulated (PPM) signals have been shown to provide improved error rate performance with respect to conventional modulation formats under additive white Gaussian noise and fading channels in single-input single-output (SISO) communication systems. In this dissertation, systems with two and four transmit antennas using PPM signals were presented. In both cases we employed full-rate space-time block codes in order to take advantage of the multipath channel. For two transmit antennas, we used the orthogonal space-time block code (OSTBC) proposed by Alamouti and performed symbol-wise decoding by estimating the phase coefficients of the PPM signal using three different methods: maximum-likelihood (ML), sub-optimal ML (S-ML) and the high-order ambiguity function (HAF). In the case of four transmit antennas, we used the full-rate quasi-OSTBC (QOSTBC) proposed by Jafarkhani. However, in order to ensure the best error rate performance, PPM signals were selected such as to maximize the QOSTBC’s minimum coding gain distance (CGD). Since this method does not always provide a unique solution, an additional criterion known as maximum channel interference coefficient (CIC) was proposed. Through Monte Carlo simulations it was shown that by using QOSTBCs along with the properly selected PPM constellations based on the CGD and CIC criteria, full diversity in flat fading channels and thus, low BER at high signal-to-noise ratios (SNR) can be ensured. Lastly, the performance of symbol-wise decoding for QOSTBCs was evaluated. In this case a quasi zero-forcing method was used to decouple the received signal and it was shown that although this technique reduces the decoding complexity of the system, there is a penalty to be paid in terms of error rate performance at high SNRs.
Resumo:
A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available.
Resumo:
The main purpose of this thesis is to go beyond two usual assumptions that accompany theoretical analysis in spin-glasses and inference: the i.i.d. (independently and identically distributed) hypothesis on the noise elements and the finite rank regime. The first one appears since the early birth of spin-glasses. The second one instead concerns the inference viewpoint. Disordered systems and Bayesian inference have a well-established relation, evidenced by their continuous cross-fertilization. The thesis makes use of techniques coming both from the rigorous mathematical machinery of spin-glasses, such as the interpolation scheme, and from Statistical Physics, such as the replica method. The first chapter contains an introduction to the Sherrington-Kirkpatrick and spiked Wigner models. The first is a mean field spin-glass where the couplings are i.i.d. Gaussian random variables. The second instead amounts to establish the information theoretical limits in the reconstruction of a fixed low rank matrix, the “spike”, blurred by additive Gaussian noise. In chapters 2 and 3 the i.i.d. hypothesis on the noise is broken by assuming a noise with inhomogeneous variance profile. In spin-glasses this leads to multi-species models. The inferential counterpart is called spatial coupling. All the previous models are usually studied in the Bayes-optimal setting, where everything is known about the generating process of the data. In chapter 4 instead we study the spiked Wigner model where the prior on the signal to reconstruct is ignored. In chapter 5 we analyze the statistical limits of a spiked Wigner model where the noise is no longer Gaussian, but drawn from a random matrix ensemble, which makes its elements dependent. The thesis ends with chapter 6, where the challenging problem of high-rank probabilistic matrix factorization is tackled. Here we introduce a new procedure called "decimation" and we show that it is theoretically to perform matrix factorization through it.
Resumo:
This thesis is a compilation of 6 papers that the author has written together with Alberto Lanconelli (chapters 3, 5 and 8) and Hyun-Jung Kim (ch 7). The logic thread that link all these chapters together is the interest to analyze and approximate the solutions of certain stochastic differential equations using the so called Wick product as the basic tool. In the first chapter we present arguably the most important achievement of this thesis; namely the generalization to multiple dimensions of a Wick-Wong-Zakai approximation theorem proposed by Hu and Oksendal. By exploiting the relationship between the Wick product and the Malliavin derivative we propose an original reduction method which allows us to approximate semi-linear systems of stochastic differential equations of the Itô type. Furthermore in chapter 4 we present a non-trivial extension of the aforementioned results to the case in which the system of stochastic differential equations are driven by a multi-dimensional fraction Brownian motion with Hurst parameter bigger than 1/2. In chapter 5 we employ our approach and present a “short time” approximation for the solution of the Zakai equation from non-linear filtering theory and provide an estimation of the speed of convergence. In chapters 6 and 7 we study some properties of the unique mild solution for the Stochastic Heat Equation driven by spatial white noise of the Wick-Skorohod type. In particular by means of our reduction method we obtain an alternative derivation of the Feynman-Kac representation for the solution, we find its optimal Hölder regularity in time and space and present a Feynman-Kac-type closed form for its spatial derivative. Chapter 8 treats a somewhat different topic; in particular we investigate some probabilistic aspects of the unique global strong solution of a two dimensional system of semi-linear stochastic differential equations describing a predator-prey model perturbed by Gaussian noise.
Resumo:
The main contribution of this thesis is the proposal of novel strategies for the selection of parameters arising in variational models employed for the solution of inverse problems with data corrupted by Poisson noise. In light of the importance of using a significantly small dose of X-rays in Computed Tomography (CT), and its need of using advanced techniques to reconstruct the objects due to the high level of noise in the data, we will focus on parameter selection principles especially for low photon-counts, i.e. low dose Computed Tomography. For completeness, since such strategies can be adopted for various scenarios where the noise in the data typically follows a Poisson distribution, we will show their performance for other applications such as photography, astronomical and microscopy imaging. More specifically, in the first part of the thesis we will focus on low dose CT data corrupted only by Poisson noise by extending automatic selection strategies designed for Gaussian noise and improving the few existing ones for Poisson. The new approaches will show to outperform the state-of-the-art competitors especially in the low-counting regime. Moreover, we will propose to extend the best performing strategy to the hard task of multi-parameter selection showing promising results. Finally, in the last part of the thesis, we will introduce the problem of material decomposition for hyperspectral CT, which data encodes information of how different materials in the target attenuate X-rays in different ways according to the specific energy. We will conduct a preliminary comparative study to obtain accurate material decomposition starting from few noisy projection data.
Resumo:
In this paper we consider the existence of the maximal and mean square stabilizing solutions for a set of generalized coupled algebraic Riccati equations (GCARE for short) associated to the infinite-horizon stochastic optimal control problem of discrete-time Markov jump with multiplicative noise linear systems. The weighting matrices of the state and control for the quadratic part are allowed to be indefinite. We present a sufficient condition, based only on some positive semi-definite and kernel restrictions on some matrices, under which there exists the maximal solution and a necessary and sufficient condition under which there exists the mean square stabilizing solution fir the GCARE. We also present a solution for the discounted and long run average cost problems when the performance criterion is assumed be composed by a linear combination of an indefinite quadratic part and a linear part in the state and control variables. The paper is concluded with a numerical example for pension fund with regime switching.
Resumo:
Electronics Letters Vol.38, nº 19