1000 resultados para Gauge boson


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The WWγ triple gauge boson coupling parameters are studied using pp̄rarr; νγ+X(=e,μ) events at s=1.96 TeV. The data were collected with the D0 detector from an integrated luminosity of 162pb-1 delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for pp̄→W(γ)+X→ νγ+X with ETγ>8 GeV and ΔR γ> 0.7 is 14.8±1.6(stat)±1.0(syst) ±1.0(lum)pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88<Δκγ<0.96 and -0. 20<λγ<0.20. © 2005 The American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a study of eeγ and μμγ events using 1109 (1009) pb-1 of data in the electron (muon) channel, respectively. These data were collected with the DØ detector at the Fermilab Tevatron p over(p, ̄) collider at sqrt(s) = 1.96   TeV. Having observed 453 (515) candidates in the eeγ (μμγ) final state, we measure the Zγ production cross section for a photon with transverse energy ET > 7   GeV, separation between the photon and leptons Δ Rℓ γ > 0.7, and invariant mass of the di-lepton pair Mℓ ℓ > 30   GeV / c2, to be 4.96 ± 0.30 (stat . + syst .) ± 0.30 (lumi .)   pb, in agreement with the Standard Model prediction of 4.74 ± 0.22   pb. This is the most precise Zγ cross section measurement at a hadron collider. We set limits on anomalous trilinear Zγγ and ZZγ gauge boson couplings of - 0.085 < h30 γ < 0.084, - 0.0053 < h40 γ < 0.0054 and - 0.083 < h30 Z < 0.082, - 0.0053 < h40 Z < 0.0054 at the 95% C.L. for the form-factor scale Λ = 1.2   TeV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This Letter describes the search for an enhanced production rate of events with a charged lepton and a neutrino in high-energy pp collisions at the LHC. The analysis uses data collected with the CMS detector, with an integrated luminosity of 5.0 fb-1 at √s=7 TeV, and a further 3.7 fb -1 at √s=8 TeV. No evidence is found for an excess. The results are interpreted in terms of limits on a heavy charged gauge boson (W ′) in the sequential standard model, a split universal extra dimension model, and contact interactions in the helicity-nonconserving model. For the last, values of the binding energy below 10.5 (8.8) TeV in the electron (muon) channel are excluded at a 95% confidence level. Interpreting the ℓν final state in terms of a heavy W′ with standard model couplings, masses below 2.90 TeV are excluded. © 2013 CERN.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the possibilities of New Physics affecting the Standard Model (SM) Higgs sector. An effective Lagrangian with dimension-six operators is used to capture the effect of New Physics. We carry out a global Bayesian inference analysis, considering the recent LHC data set including all available correlations, as well as results from Tevatron. Trilinear gauge boson couplings and electroweak precision observables are also taken into account. The case of weak bosons tensorial couplings is closely examined and NLO QCD corrections are taken into account in the deviations we predict. We consider two scenarios, one where the coefficients of all the dimension-six operators are essentially unconstrained, and one where a certain subset is loop suppressed. In both scenarios, we find that large deviations from some of the SM Higgs couplings can still be present, assuming New Physics arising at 3 TeV. In particular, we find that a significantly reduced coupling of the Higgs to the top quark is possible and slightly favored by searches on Higgs production in association with top quark pairs. The total width of the Higgs boson is only weakly constrained and can vary between 0.7 and 2.7 times the Standard Model value within 95% Bayesian credible interval (BCI). We also observe sizeable effects induced by New Physics contributions to tensorial couplings. In particular, the Higgs boson decay width into Zγ can be enhanced by up to a factor 12 within 95% BCI. © 2013 SISSA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the production of gauge-boson pairs at the next generation of linear e+e- colliders operating in the eγ mode. The processes eγ → VV′F (V,V′ = W,Z, or γ and F = e or ν) can give valuable information on possible deviations of the quartic vector-boson couplings from the Standard Model predictions. We establish the range of the new couplings that can be explored in these colliders based on a 3σ effect in the total cross section. We also present several kinematical distributions of the final state particles that could manifest the underlying new dynamics. Our results show that an eγ collider can extend considerably the bounds on anomalous interactions coming from oblique radiative corrections and from direct searches in e+e- colliders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A measurement of the ZZ production cross section in proton-proton collisions at root s = 7 TeV using data recorded by the ATLAS experiment at the Large Hadron Collider is presented. In a data sample corresponding to an integrated luminosity of 4.6 fb(-1) collected in 2011, events are selected that are consistent either with two Z bosons decaying to electrons or muons or with one Z boson decaying to electrons or muons and a second Z boson decaying to neutrinos. The ZZ((*)) -> l(+)l(-)l'(+)l'(-) and ZZ -> l(+)l(-) nu(nu) over bar cross sections are measured in restricted phase-space regions. These results are then used to derive the total cross section for ZZ events produced with both Z bosons in the mass range 66 to 116 GeV, sigma(tot)(ZZ) = 6.7 +/- 0.7 (stat.) (+0.4)(-0.3) (syst.) +/- 0.3 (lumi.) pb, which is consistent with the Standard Model prediction of 5.89(-0.18)(+0.22) pb calculated at next-to-leading order in QCD. The normalized differential cross sections in bins of various kinematic variables are presented. Finally, the differential event yield as a function of the transverse momentum of the leading Z boson is used to set limits on anomalous neutral triple gauge boson couplings in ZZ production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The integrated and differential fiducial cross sections for the production of a W or Z boson in association with a high-energy photon are measured using pp collisions at root s = 7 TeV. The analyses use a data sample with an integrated luminosity of 4.6 fb(-1) collected by the ATLAS detector during the 2011 LHC data-taking period. Events are selected using leptonic decays of the W and Z bosons [W(e nu, mu nu) and Z(e(+)e(-), mu(+)mu(-), nu(nu) over bar)] with the requirement of an associated isolated photon. The data are used to test the electroweak sector of the Standard Model and search for evidence for new phenomena. The measurements are used to probe the anomalous WW gamma, ZZ gamma, and Z gamma gamma triple-gauge-boson couplings and to search for the production of vector resonances decaying to Z gamma and W gamma. No deviations from Standard Model predictions are observed and limits are placed on anomalous triple-gauge-boson couplings and on the production of new vector meson resonances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this addendum to T. Becher and X. Garcia i Tormo, Phys. Rev. D 88, 013009 (2013), we give results for the electroweak Sudakov corrections in gauge-boson production at large transverse momentum pT at proton colliders. For the results to be easily usable, we provide a simple and accurate parametrization of the corrections as a function of pT and the center-of-mass energy s√. Additionally, we also discuss the dependence of the electroweak corrections on the rapidity of the produced boson and comment on the complications that arise in the photon-production case due to isolation requirements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Very recently, the ATLAS and CMS Collaborations reported diboson and dijet excesses above standard model expectations in the invariant mass region of 1.8–2.0 TeV. Interpreting the diboson excess of events in a model independent fashion suggests that the vector boson pair production searches are best described by WZ or ZZ topologies, because states decaying into W+W− pairs are strongly constrained by semileptonic searches. Under the assumption of a low string scale, we show that both the diboson and dijet excesses can be steered by an anomalous U(1) field with very small coupling to leptons. The Drell–Yan bounds are then readily avoided because of the leptophobic nature of the massive Z′ gauge boson. The non-negligible decay into ZZ required to accommodate the data is a characteristic footprint of intersecting D-brane models, wherein the Landau–Yang theorem can be evaded by anomaly-induced operators involving a longitudinal Z. The model presented herein can be viewed purely field-theoretically, although it is particularly well motivated from string theory. Should the excesses become statistically significant at the LHC13, the associated Zγ topology would become a signature consistent only with a stringy origin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We explore the use of polarized e(+)/e(-) beams and/or the information on final state decay lepton polarizations in probing the interaction of the Higgs boson with a pair of vector bosons. A model independent analysis of the process e(+)e(-) -> f (f) over barH, where f is any light fermion, is carried out through the construction of observables having identical properties under the discrete symmetry transformations as different individual anomalous interactions. This allows us to probe an individual anomalous term independent of the others. We find that initial state beam polarization can significantly improve the sensitivity to CP-odd couplings of the Z boson with the Higgs boson (ZZH). Moreover, an ability to isolate events with a particular tau helicity, with even 40% efficiency, can improve sensitivities to certain ZZH couplings by as much as a factor of 3. In addition, the contamination from the ZZH vertex contributions present in the measurement of the trilinear Higgs-W (WWH) couplings can be reduced to a great extent by employing polarized beams. The effects of initial state radiation and beamstrahlung, which can be relevant for higher values of the beam energy are also included in the analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using a synthesis of the functional integral and operator approaches we discuss the fermion-buson mapping and the role played by the Bose field algebra in the Hilbert space of two-dimensional gauge and anomalous gauge field theories with massive fermions. In QED, with quartic self-interaction among massive fermions, the use of an auxiliary vector field introduces a redundant Bose field algebra that should not be considered as an element of the intrinsic algebraic structure defining the model. In anomalous chiral QED, with massive fermions the effect of the chiral anomaly leads to the appearance in the mass operator of a spurious Bose field combination. This phase factor carries no fermion selection rule and the expected absence of Theta-vacuum in the anomalous model is displayed from the operator solution. Even in the anomalous model with massive Fermi fields, the introduction of the Wess-Zumino field replicates the theory, changing neither its algebraic content nor its physical content. (C) 2002 Elsevier B.V. (USA).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generation and study of synthetic gauge fields has enhanced the possibility of using cold atom systems as quantum emulators of condensed matter Hamiltonians. In this article we describe the physics of interacting spin -1/2 fermions in synthetic non-Abelian gauge fields which induce a Rashba spin-orbit interaction on the motion of the fermions. We show that the fermion system can evolve to a Bose-Einstein condensate of a novel boson which we call rashbon. The rashbon-rashbon interaction is shown to be independent of the interaction between the constituent fermions. We also show that spin-orbit coupling can help enhancing superfluid transition temperature of weak superfluids to the order of Fermi temperature. A non-Abelian gauge field, when used in conjunction with another potential, can generate interesting Hamiltonians such as that of a magnetic monopole.