966 resultados para Gastropod shells


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite circular cylindrical shell subjected to a band of uniform pressure on its outer rim was investigated, using three-dimensional elasticity theory and the classical shell theories of Timoshenko (or Donnell) and Flügge. Detailed comparison of the resulting stresses and displacements was carried out for shells with ratios of inner to outer shell radii equal to 0.80, 0.85, 0.90 and 0.93 and for ratios of outer shell diameter to length of the shell equal to 0.5, 1 and 2. The ratio of band width to length of the shell was 0.2 and Poisson's ratio used was equal to 0.3. An Elliot 803 digital computer was used for numerical computations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plastic response of a segment of a simply supported orthotropic spherical shell under a uniform blast loading applied on the convex surface of the shell is presented. The blast is assumed to impart a uniform velocity to the shell surface initially. The material of the shell is orthotropic obeying a modified Tresca yield hypersurface conditions and the associated flow rules. The deformation of the shell is determined during all phases of its motion by considering the motion of plastic hinges in different regimes of flow. Numerical results presented include the permanent deformed configuration of the shell and the total time of shell response for different degrees of orthotropy. Conclusions regarding the plastic behaviour of spherical shells with circumferential and meridional stiffening under uniform blast load are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of photoelastic investigations conducted on cylindrical tubes (made of Araldite material) containing cracks oriented at 0°, 30°, 45°, 60° and 90° to the axis of the tube and subjected to axial and torsional loads are reported. The stress-intensity factors (SIFs) were determined by analysing the crack-tip stress fields. Smith and Smith's method [Engng Fracture Mech.4, 357–366 (1972)] and a new method developed by the authors by modifying Rakesh et al.'s method [Proc. 26th Congress of ISTAM, India (1981)] were employed to evaluate the mixed-mode SIFs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical expressions are found for the coupled wavenumbers in an infinite fluid-filled cylindrical shell using the asymptotic methods. These expressions are valid for any general circumferential order (n).The shallow shell theory (which is more accurate at higher frequencies)is used to model the cylinder. Initially, the in vacua shell is dealt with and asymptotic expressions are derived for the shell wavenumbers in the high-and the low-frequency regimes. Next, the fluid-filled shell is considered. Defining a relevant fluid-loading parameter p, we find solutions for the limiting cases of small and large p. Wherever relevant, a frequency scaling parameter along with some ingenuity is used to arrive at an elegant asymptotic expression. In all cases.Poisson's ratio v is used as an expansion variable. The asymptotic results are compared with numerical solutions of the dispersion equation and the dispersion relation obtained by using the more general Donnell-Mushtari shell theory (in vacuo and fluid-filled). A good match is obtained. Hence, the contribution of this work lies in the extension of the existing literature to include arbitrary circumferential orders(n). (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of a circular elastic inclusion in a cylindrical shell subjected to internal pressure or thermal loading is studied. The two shallow-shell equations governing the behaviour of a cylindrical shell are transformed into a single differential equation involving a curvature parameter and a complex potential function in a non-dimensional form. In the shell region, the solution is represented by Hankel functions of first kind, whereas in the inclusion region it is represented by Bessel functions of first kind. Boundary conditions at the shell-inclusion junction are expressed in a simple form involving in-plane strains and change in curvature. The effect of such inclusion parameters as extensional rigidity, bending rigidity, and thermal expansion coefficients on the stress concentrations has been determined. The results are presented in non-dimensional form for ready use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of having an edge reinforcement around a circular elastic inclusion in a cylindrical shell is studied. The influence of various parameters of the reinforcement such as area of cross section and moment of inertia on the stress concentrations around the inclusion is investigated. It is found that for certain inclusion parameters it is possible to get an optimum reinforcement, which gives minimum stress concentration around the inclusion. The effect of moment of inertia of the reinforcement of SCF is found to be negligible. The results are plotted in a non-dimensional form and a comparison with flat plate results is made which show the curvature effect. In the limiting case of a rigid reinforcement the results tend to those of a rigid circular inclusion. Results are also presented for different values of μe the ratio of extensional rigidity of shell to that of the inclusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical expressions are found for the wavenumbers and resonance frequencies in flexible, orthotropic shells using the asymptotic methods. These expressions are valid for arbitrary circumferential orders n. The Donnell-Mushtari shell theory is used to model the dynamics of the cylindrical shell. Initially, an in vacuo cylindrical isotropic shell is considered and expressions for all the wavenumbers (bending, near-field bending, longitudinal and torsional) are found. Subsequently, defining a suitable orthotropy parameter epsilon, the problem of wave propagation in an orthotropic shell is posed as a perturbation on the corresponding problem for an isotropic shell. Asymptotic expressions for the wavenumbers in the in vacuo orthotropic shell are then obtained by treating epsilon as an expansion parameter. In both cases (isotropy and orthotropy), a frequency-scaling parameter (eta) and Poisson's ratio (nu) are used to find elegant expansions in the different frequency regimes. The asymptotic expansions are compared with numerical solutions in each of the cases and the match is found to be good. The main contribution of this work lies in the extension of the existing literature by developing closed-form expressions for wavenumbers with arbitrary circumferential orders n in the case of both, isotropic and orthotropic shells. Finally, we present natural frequency expressions in finite shells (isotropic and orthotropic) for the axisymmetric mode and compare them with numerical and ANSYS results. Here also, the comparison is found to be good. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider wavenumbers in in vacuo and fluid-filled isotropic and orthotropic shells. Using the Donnell-Mushtari (DM) theory we find compact and elegant asymptotic expansions for the wavenumbers in the intermediate frequency range, i.e., around the ring frequency. This frequency range corresponds to the frequencies where there is a rapid change in the values of bending wavenumbers and is found to exist in isotropic and orthotropic shells (in vacua and fluid-filled) for low circumferential orders n only. The same is first identified using the n=0 mode of an orthotropic shell. Following this, using the expression for the intermediate frequency, asymptotic expansions are found for other cases. Here, in order to get compact expansions we consider slight orthotropy (epsilon << 1) and light fluid loading (mu << 1). Thus, the orthotropy parameter epsilon and the fluid loading parameter mu are used as asymptotic parameters along with the non-dimensional thickness parameter beta. The methodology can be extended to any order of epsilon, only the expansions become unwieldy. The expansions are matched with the numerical solutions of the corresponding dispersion relation. The match is found to be good.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonal rainfall patterns in Bangalore, India, have been reconstructed using stable isotopic ratios in the growth bands of Giant African Land Snail shells. The present study was conducted at Bangalore, India which receives rain during the summer months. The oxygen isotopic record in the rainwater samples collected during different months covering the period of the summer monsoon of the year 2008 is compared with the isotopic ratio in the gastropod growth bands deposited simultaneously. The chronology of the shell growth band is independently established assuming the growth rate observed in a chamber experiment maintaining similar relative humidity and temperature conditions. A consistent pattern observed in the isotopic ratio in the gastropod growth bands and rainwater is demonstrated and provides a novel approach for precipitation reconstruction at seasonal and weekly time scales. This approach of using isotopic ratios in the gastropod growth bands for rainfall can serve as a substitute for filling gaps in rainfall data and for cases where no rain records are available. In addition, they can be used to determine the frequencies and magnitudes of dry spells from the past records. (C) 2013 Elsevier B.V. All rights reserved.