99 resultados para Galois
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Construction techniques with ruler and the compasses, fundamental on Euclidean geometry, have been related to modern algebraic theories such as solving equations and extension of bodies from the works by Paolo Ruffini (1765-1822), Niels Henrik Abel (1802-1829) and Evariste Galois (1811-1832). This relation could provide an answer to some famous problems, from ancient Greece, such as doubling the cube, the trisection Angle, the Quadrature of the Circle and the construction of regular polygons, which remained unsolved for over two thousand years. Also important for our purposes are the notions of algebraic numbers, transcendental and the criteria for constructability, of those numbers. The objective of this study is to reconstruct relevant steps of geometric constructions with ruler (unmarked) and the compasses, from the elementary to the outcome buildings, in the nineteenth century, considering those mentioned problems.
Resumo:
In this paper, we present a new construction and decoding of BCH codes over certain rings. Thus, for a nonnegative integer t, let A0 ⊂ A1 ⊂···⊂ At−1 ⊂ At be a chain of unitary commutative rings, where each Ai is constructed by the direct product of appropriate Galois rings, and its projection to the fields is K0 ⊂ K1 ⊂···⊂ Kt−1 ⊂ Kt (another chain of unitary commutative rings), where each Ki is made by the direct product of corresponding residue fields of given Galois rings. Also, A∗ i and K∗ i are the groups of units of Ai and Ki, respectively. This correspondence presents a construction technique of generator polynomials of the sequence of Bose, Chaudhuri, and Hocquenghem (BCH) codes possessing entries from A∗ i and K∗ i for each i, where 0 ≤ i ≤ t. By the construction of BCH codes, we are confined to get the best code rate and error correction capability; however, the proposed contribution offers a choice to opt a worthy BCH code concerning code rate and error correction capability. In the second phase, we extend the modified Berlekamp-Massey algorithm for the above chains of unitary commutative local rings in such a way that the error will be corrected of the sequences of codewords from the sequences of BCH codes at once. This process is not much different than the original one, but it deals a sequence of codewords from the sequence of codes over the chain of Galois rings.
Resumo:
Um código BCH C (respectivamente, um código BCH C 0 ) de comprimento n sobre o anel local Zp k (respectivamente, sobre o corpo Zp) é um ideal no anel Zpk [X] (Xn−1) (respectivamente, no anel Zp[X] (Xn−1) ), que ´e gerado por um polinômio mônico que divide Xn−1. Shankar [1] mostrou que as raízes de Xn−1 são as unidades do anel de Galois GR(p k , s) (respectivamente, corpo de Galois GF(p, s)) que é uma extensão do anel Zp k (respectivamente, do corpo Zp), onde s é o grau de um polinômio irredutível f(X) ∈ Zp k [X]. Neste estudo, assumimos que para si = b i , onde b é um primo e i é um inteiro não negativo tal que 0 ≤ i ≤ t, existem extensões de anéis de Galois correspondentes GR(p k , si) (respectivamente, extensões do corpo de Galois GF(p, si)) do anel Zp k (respectivamente, do corpo Zp). Assim, si = b i para i = 2 ou si = b i para i > 2. De modo análogo a [1], neste trabalho, apresentamos uma sequência de códigos BCH C0, C1, · · · , Ct−1C sobre Zp k de comprimentos n0, n1, · · · , nt−1, nt , e uma sequência de códigos BCH C 0 0 , C0 1 , · · · , C0 t−1 , C0 sobre Zp de comprimentos n0, n1, · · · , nt−1, nt , onde cada ni divide p si − 1. Palavras Chave: Anel de Galois, corpo de Galois, código BCH.
Resumo:
In this paper we present matrices over unitary finite commutative local rings connected through an ascending chain of containments, whose elements are units of the corresponding rings in the chain such that the McCoy ranks are the largest ones.
Resumo:
For a positive integer $t$, let \begin{equation*} \begin{array}{ccccccccc} (\mathcal{A}_{0},\mathcal{M}_{0}) & \subseteq & (\mathcal{A}_{1},\mathcal{M}_{1}) & \subseteq & & \subseteq & (\mathcal{A}_{t-1},\mathcal{M}_{t-1}) & \subseteq & (\mathcal{A},\mathcal{M}) \\ \cap & & \cap & & & & \cap & & \cap \\ (\mathcal{R}_{0},\mathcal{M}_{0}^{2}) & & (\mathcal{R}_{1},\mathcal{M}_{1}^{2}) & & & & (\mathcal{R}_{t-1},\mathcal{M}_{t-1}^{2}) & & (\mathcal{R},\mathcal{M}^{2}) \end{array} \end{equation*} be a chain of unitary local commutative rings $(\mathcal{A}_{i},\mathcal{M}_{i})$ with their corresponding Galois ring extensions $(\mathcal{R}_{i},\mathcal{M}_{i}^{2})$, for $i=0,1,\cdots,t$. In this paper, we have given a construction technique of the cyclic, BCH, alternant, Goppa and Srivastava codes over these rings. Though, initially in \cite{AP} it is for local ring $(\mathcal{A},\mathcal{M})$, in this paper, this new approach have given a choice in selection of most suitable code in error corrections and code rate perspectives.
Resumo:
This paper presents the design of a high-speed coprocessor for Elliptic Curve Cryptography over binary Galois Field (ECC- GF(2m)). The purpose of our coprocessor is to accelerate the scalar multiplication performed over elliptic curve points represented by affine coordinates in polynomial basis. Our method consists of using elliptic curve parameters over GF(2163) in accordance with international security requirements to implement a bit-parallel coprocessor on field-programmable gate-array (FPGA). Our coprocessor performs modular inversion by using a process based on the Stein's algorithm. Results are presented and compared to results of other related works. We conclude that our coprocessor is suitable for comparing with any other ECC-hardware proposal, since its speed is comparable to projective coordinate designs.
Resumo:
The goal of this work is find a description for fields of two power conductor. By the Kronecker-Weber theorem, these amounts to find the subfields of cyclotomic field $\mathbb{Q}(\xi_{2^r})$, where $\xi_{2^r}$ is a $2^r$-th primitive root of unit and $r$ a positive integer. In this case, the cyclotomic extension isn't cyclic, however its Galois group is generated by two elements and the subfield can be expressed by $\mathbb{Q}(\theta)$ for a $\theta\in\mathbb{Q}(\xi_{2^r})$ convenient.
Resumo:
Topics include: Free groups and presentations; Automorphism groups; Semidirect products; Classification of groups of small order; Normal series: composition, derived, and solvable series; Algebraic field extensions, splitting fields, algebraic closures; Separable algebraic extensions, the Primitive Element Theorem; Inseparability, purely inseparable extensions; Finite fields; Cyclotomic field extensions; Galois theory; Norm and trace maps of an algebraic field extension; Solvability by radicals, Galois' theorem; Transcendence degree; Rings and modules: Examples and basic properties; Exact sequences, split short exact sequences; Free modules, projective modules; Localization of (commutative) rings and modules; The prime spectrum of a ring; Nakayama's lemma; Basic category theory; The Hom functors; Tensor products, adjointness; Left/right Noetherian and Artinian modules; Composition series, the Jordan-Holder Theorem; Semisimple rings; The Artin-Wedderburn Theorem; The Density Theorem; The Jacobson radical; Artinian rings; von Neumann regular rings; Wedderburn's theorem on finite division rings; Group representations, character theory; Integral ring extensions; Burnside's paqb Theorem; Injective modules.
Resumo:
La tesi tratta dei gruppi semplici sporadici, in particolar modo dei gruppi di Mathieu. Sono state ripercorse tappe storiche fondamentali, a partire dalla semplicità del gruppo alterno An, n>4, nota a Galois, fino a giungere al teorema di classificazione dei gruppi semplici, di cui i gruppi sporadici rappresentano un caso particolare. Vengono poi proposte diverse costruzioni dei gruppi di Mathieu, passando dall'algebra alla geometria fino alla teoria dell'informazione. Quindi vengono discusse le proprietà principali dei gruppi di Mathieu, e infine si presentano congetture in cui i gruppi di Mathieu, o più in generale i gruppi sporadici, giocano un ruolo fondamentale, come ad esempio nella congettura "moonshine". Al termine della tesi vengono presentati i gruppi di Mathieu in ambiti diversi dal mondo matematico, dal gioco alla musica.
Resumo:
In der Nichtkommutativen Geometrie werden Räume und Strukturen durch Algebren beschrieben. Insbesondere werden hierbei klassische Symmetrien durch Hopf-Algebren und Quantengruppen ausgedrückt bzw. verallgemeinert. Wir zeigen in dieser Arbeit, daß der bekannte Quantendoppeltorus, der die Summe aus einem kommutativen und einem nichtkommutativen 2-Torus ist, nur den Spezialfall einer allgemeineren Konstruktion darstellt, die der Summe aus einem kommutativen und mehreren nichtkommutativen n-Tori eine Hopf-Algebren-Struktur zuordnet. Diese Konstruktion führt zur Definition der Nichtkommutativen Multi-Tori. Die Duale dieser Multi-Tori ist eine Kreuzproduktalgebra, die als Quantisierung von Gruppenorbits interpretiert werden kann. Für den Fall von Wurzeln der Eins erhält man wichtige Klassen von endlich-dimensionalen Kac-Algebren, insbesondere die 8-dim. Kac-Paljutkin-Algebra. Ebenfalls für Wurzeln der Eins kann man die Nichtkommutativen Multi-Tori als Hopf-Galois-Erweiterungen des kommutativen Torus interpretieren, wobei die Rolle der typischen Faser von einer endlich-dimensionalen Hopf-Algebra gespielt wird. Der Nichtkommutative 2-Torus besitzt bekanntlich eine u(1)xu(1)-Symmetrie. Wir zeigen, daß er eine größere Quantengruppen-Symmetrie besitzt, die allerdings nicht auf die Spektralen Tripel des Nichtkommutativen Torus fortgesetzt werden kann.
Resumo:
Lo scopo di questa tesi è di esporre il cuore centrale della teoria di Galois, la risolubilità per radicali delle equazioni polinomiali nel caso in cui il campo di partenza abbia caratteristica 0. L’operato è articolato in tre capitoli. Nel primo capitolo vengono introdotte le nozioni fondamentali della teoria dei campi e della teoria di Galois. Nel secondo capitolo, si sviluppa il problema della risolubilità per radicali. Vengono prima introdotti i gruppi risolubili e alcune loro particolarità. Poi vengono introdotte le nozioni di estensioni radicali e risolubili e relativi teoremi. Nel paragrafo 2.3 viene dimostrato il teorema principale della teoria, il teorema di Galois, che identifica la risolubilità del gruppo di Galois con la risolubilità dell’estensione. Infine l’ultimo paragrafo si occupa della risolubilità dei polinomi, sfruttando il loro campo di spezzamento. Nel terzo ed ultimo capitolo, viene discussa la risolubilita` dell’equazione polinomiale generale di grado n. Vengono inoltre riportati diversi esempi ed infine viene presentato un esempio di estensione di Galois di grado primo p non risolubile in caratteristica p.
Resumo:
Lo scopo della tesi è quello di studiare una delle applicazioni della teoria dei campi finiti: il segnale GPS. A questo scopo si descrivono i registri a scorrimento a retroazione lineare (linear feedback shift register, LFSR), dispositivi utili in applicazioni che richiedono la generazione molto rapida di numeri pseudo-casuali. I ricevitori GPS sfruttano il determinismo di questi dispositivi per identificare il satellite da cui proviene il segnale e per sincronizzarsi con esso. Si inizia con una breve introduzione al funzionamento del GPS, poi si studiano i campi finiti: sottocampi, estensioni di campo, gruppo moltiplicativo e costruzione attraverso la riduzione modulo un polinomio irriducibile, fattorizzazione di polinomi, formula per il numero e metodi per la determinazione di polinomi irriducibili, radici di polinomi irriducibili, coniugati, teoria di Galois (automorfismo ed orbite di Frobenius, gruppo e corrispondenza di Galois), traccia, polinomio caratteristico, formula per il numero e metodi per la determinazione di polinomi primitivi. Successivamente si introducono e si esaminano sequenze ricorrenti lineari, loro periodicità, la sequenza risposta impulsiva, il polinomio caratteristico associato ad una sequenza e la sequenza di periodo massimo. Infine, si studiano i registri a scorrimento che generano uno dei segnali GPS. In particolare si esamina la correlazione tra due sequenze. Si mostra che ogni polinomio di grado n-1 a coefficienti nel campo di Galois di ordine 2 può essere rappresentato univocamente in n bit; la somma tra polinomi può essere eseguita come XOR bit-a-bit; la moltiplicazione per piccoli coefficienti richiede al massimo uno shift ed uno XOR. Si conclude con la dimostrazione di un importante risultato: è possibile inizializzare un registro in modo tale da fargli generare una sequenza di periodo massimo poco correlata con ogni traslazione di se stessa.
Resumo:
In questa tesi si descrive il gruppo dei quaternioni come gruppo non abeliano avente tutti i sottogruppi normali. In particolare si dimostra il teorema di Dedekind che determina la struttura dei gruppi aventi tutti i sottogruppi normali. Si dà poi un polinomio a coefficienti razionali il cui gruppo di Galois coincide con il gruppo dei quaternioni.