938 resultados para Galileo whole body vibration exercise


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current research compared resting heart rate variability (VFC) before and after 10 weeks of strength training in groups that used and did not use a vibration platform. Seventeen healthy men were divided into conventional strength training (TF) or strength training using a vibration platform with a frequency of 30 Hz (TF+V30) training groups. One repetition maximum load (1-RM) on half squat exercise and VFC measurements were determined pre- and post-training program. Both groups had improved 1-RM load after the program (15.1% in TF group and 16.4% in TF+V30 group), although this increase was changed in the same extent for the two groups and there was no difference in 1-RM load between groups pre- and post-training program. No significant difference was observed in resting VFC measurements between groups pre and post-training program, however the magnitude of the effect size was moderated (ES = 0.50-0.80) for some variables (R-R interval, standard deviation of all R-R interval - SDNN, RMSSD, log-transformed of low frequency - InLF, and log-transformed of high frequency - InHF) in TF+V30 group. It was concluded that 10 weeks of strength training program with or without the vibration platform provided similar increase in 1-RM load in both groups, and although some evidences in this study indicate that vibration can increase vagal activity analyzed by ES, in neither groups the strength training was able to change VFC significantly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human reactions to vibration have been extensively investigated in the past. Vibration, as well as whole-body vibration (WBV), has been commonly considered as an occupational hazard for its detrimental effects on human condition and comfort. Although long term exposure to vibrations may produce undesirable side-effects, a great part of the literature is dedicated to the positive effects of WBV when used as method for muscular stimulation and as an exercise intervention. Whole body vibration training (WBVT) aims to mechanically activate muscles by eliciting neuromuscular activity (muscle reflexes) via the use of vibrations delivered to the whole body. The most mentioned mechanism to explain the neuromuscular outcomes of vibration is the elicited neuromuscular activation. Local tendon vibrations induce activity of the muscle spindle Ia fibers, mediated by monosynaptic and polysynaptic pathways: a reflex muscle contraction known as the Tonic Vibration Reflex (TVR) arises in response to such vibratory stimulus. In WBVT mechanical vibrations, in a range from 10 to 80 Hz and peak to peak displacements from 1 to 10 mm, are usually transmitted to the patient body by the use of oscillating platforms. Vibrations are then transferred from the platform to a specific muscle group through the subject body. To customize WBV treatments, surface electromyography (SEMG) signals are often used to reveal the best stimulation frequency for each subject. Use of SEMG concise parameters, such as root mean square values of the recordings, is also a common practice; frequently a preliminary session can take place in order to discover the more appropriate stimulation frequency. Soft tissues act as wobbling masses vibrating in a damped manner in response to mechanical excitation; Muscle Tuning hypothesis suggest that neuromuscular system works to damp the soft tissue oscillation that occurs in response to vibrations; muscles alters their activity to dampen the vibrations, preventing any resonance phenomenon. Muscle response to vibration is however a complex phenomenon as it depends on different parameters, like muscle-tension, muscle or segment-stiffness, amplitude and frequency of the mechanical vibration. Additionally, while in the TVR study the applied vibratory stimulus and the muscle conditions are completely characterised (a known vibration source is applied directly to a stretched/shortened muscle or tendon), in WBV study only the stimulus applied to a distal part of the body is known. Moreover, mechanical response changes in relation to the posture. The transmissibility of vibratory stimulus along the body segment strongly depends on the position held by the subject. The aim of this work was the investigation on the effects that the use of vibrations, in particular the effects of whole body vibrations, may have on muscular activity. A new approach to discover the more appropriate stimulus frequency, by the use of accelerometers, was also explored. Different subjects, not affected by any known neurological or musculoskeletal disorders, were voluntarily involved in the study and gave their informed, written consent to participate. The device used to deliver vibration to the subjects was a vibrating platform. Vibrations impressed by the platform were exclusively vertical; platform displacement was sinusoidal with an intensity (peak-to-peak displacement) set to 1.2 mm and with a frequency ranging from 10 to 80 Hz. All the subjects familiarized with the device and the proper positioning. Two different posture were explored in this study: position 1 - hack squat; position 2 - subject standing on toes with heels raised. SEMG signals from the Rectus Femoris (RF), Vastus Lateralis (VL) and Vastus medialis (VM) were recorded. SEMG signals were amplified using a multi-channel, isolated biomedical signal amplifier The gain was set to 1000 V/V and a band pass filter (-3dB frequency 10 - 500 Hz) was applied; no notch filters were used to suppress line interference. Tiny and lightweight (less than 10 g) three-axial MEMS accelerometers (Freescale semiconductors) were used to measure accelerations of onto patient’s skin, at EMG electrodes level. Accelerations signals provided information related to individuals’ RF, Biceps Femoris (BF) and Gastrocnemius Lateralis (GL) muscle belly oscillation; they were pre-processed in order to exclude influence of gravity. As demonstrated by our results, vibrations generate peculiar, not negligible motion artifact on skin electrodes. Artifact amplitude is generally unpredictable; it appeared in all the quadriceps muscles analysed, but in different amounts. Artifact harmonics extend throughout the EMG spectrum, making classic high-pass filters ineffective; however, their contribution was easy to filter out from the raw EMG signal with a series of sharp notch filters centred at the vibration frequency and its superior harmonics (1.5 Hz wide). However, use of these simple filters prevents the revelation of EMG power potential variation in the mentioned filtered bands. Moreover our experience suggests that the possibility of reducing motion artefact, by using particular electrodes and by accurately preparing the subject’s skin, is not easily viable; even though some small improvements were obtained, it was not possible to substantially decrease the artifact. Anyway, getting rid of those artifacts lead to some true EMG signal loss. Nevertheless, our preliminary results suggest that the use of notch filters at vibration frequency and its harmonics is suitable for motion artifacts filtering. In RF SEMG recordings during vibratory stimulation only a little EMG power increment should be contained in the mentioned filtered bands due to synchronous electromyographic activity of the muscle. Moreover, it is better to remove the artifact that, in our experience, was found to be more than 40% of the total signal power. In summary, many variables have to be taken into account: in addition to amplitude, frequency and duration of vibration treatment, other fundamental variables were found to be subject anatomy, individual physiological condition and subject’s positioning on the platform. Studies on WBV treatments that include surface EMG analysis to asses muscular activity during vibratory stimulation should take into account the presence of motion artifacts. Appropriate filtering of artifacts, to reveal the actual effect on muscle contraction elicited by vibration stimulus, is mandatory. However as a result of our preliminary study, a simple multi-band notch filtering may help to reduce randomness of the results. Muscle tuning hypothesis seemed to be confirmed. Our results suggested that the effects of WBV are linked to the actual muscle motion (displacement). The greater was the muscle belly displacement the higher was found the muscle activity. The maximum muscle activity has been found in correspondence with the local mechanical resonance, suggesting a more effective stimulation at the specific system resonance frequency. Holding the hypothesis that muscle activation is proportional to muscle displacement, treatment optimization could be obtained by simply monitoring local acceleration (resonance). However, our study revealed some short term effects of vibratory stimulus; prolonged studies should be assembled in order to consider the long term effectiveness of these results. Since local stimulus depends on the kinematic chain involved, WBV muscle stimulation has to take into account the transmissibility of the stimulus along the body segment in order to ensure that vibratory stimulation effectively reaches the target muscle. Combination of local resonance and muscle response should also be further investigated to prevent hazards to individuals undergoing WBV treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies have tried to find countermeasures against musculoskeletal de-conditioning during bed-rest, but none of them yielded decisive results. We hypothesised that resistive vibration exercise (RVE) might be a suitable training modality. We have therefore carried out a bed-rest study to evaluate its feasibility and efficacy during 56 days of bed-rest. Twenty healthy male volunteers aged 24 to 43 years were recruited and, after medical check-ups, randomised to a non-exercising control (Ctrl) group or a group that performed RVE 11 times per week. Strict bed-rest was controlled by video surveillance. The diet was controlled. RVE was performed in supine position, with a static force component of about twice the body weight and a smaller dynamic force component. RVE comprised four different units (squats, heel raises, toe raises, kicks), each of which lasted 60 - 100 seconds. Pre and post exercise levels of lactate were measured once weekly. Body weight was measured daily on a bed scale. Pain questionnaires were obtained in regular intervals during and after the bed-rest. Vibration frequency was set to 19 Hz at the beginning and progressed to 25.9 Hz (SD 1.9) at the end of the study, suggesting that the dynamic force component increased by 90%. The maximum sustainable exercise time for squat exercise increased from 86 s (SD 21) on day 11 of the BR to 176 s (SD 73) on day 53 (p = 0.006). On the same days, post-exercise lactate levels increased from 6.9 mmol/l (SD2.3) to 9.2 mmol/l (SD 3.5, p = 0.01). On average, body weight was unchanged in both groups during bed-rest, but single individuals in both groups depicted significant weight changes ranging from -10% to + d10% (p < 0.001). Lower limb pain was more frequent during bed-rest in the RVE subjects than in Ctrl (p = 0.035). During early recovery, subjects of both groups suffered from muscle pain to a comparable extent, but foot pain was more common in Ctrl than in RVE (p = 0.013 for plantar pain, p = 0.074 for dorsal foot pain). Our results indicate that RVE is feasible twice daily during bed-rest in young healthy males, provided that one afternoon and one entire day per week are free. Exercise progression, mainly by progression of vibration frequency, yielded increases in maximum sustainable exercise time and blood lactate. In conclusion, RVE as performed in this study, appears to be safe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to evaluate the application of ensemble averaging to the analysis of electromyography recordings under whole body vibratory stimulation. Recordings from Rectus Femoris, collected during vibratory stimulation at different frequencies, are used. Each signal is subdivided in intervals, which time duration is related to the vibration frequency. Finally the average of the segmented intervals is performed. By using this method for the majority of the recordings the periodic components emerge. The autocorrelation of few seconds of signals confirms the presence of a pseudosinusoidal components strictly related to the soft tissues oscillations caused by the mechanical waves. © 2014 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Survival from melanoma is strongly related to tumour thickness, thus earlier diagnosis has the potential to reduce mortality from this disease. However, in the absence of conclusive evidence that clinical skin examination reduces mortality, evidence-based assessments do not recommend population screening. We aimed to assess whether clinical whole-body skin examination is associated with a reduced incidence of thick melanoma and also whether screening is associated with an increased incidence of thin lesions (possible overdiagnosis). A population-based case-control study of all Queensland residents aged 20-75 years with a histologically confirmed first primary invasive cutaneous melanoma diagnosed between January 2000 and December 2003. Telephone interviews were completed by 3,762 eligible cases (78.0%) and 3,824 eligible controls (50.4%) Whole-body clinical skin examination in the three years before diagnosis was associated with a 14% lower risk of being diagnosed with a thick melanoma (>0.75mm) (OR= 0.86, 95% CI=0.75, 0.98). Risk decreased for melanomas of increasing thickness: the risk of being diagnosed with a melanoma 0.76-1.49mm was reduced by 7% (OR=0.93, 95% CI 0.79, 1.10), by 17% for melanomas 1.50-2.99mm (OR=0.83, 95% CI=0.65, 1.05) and by 40% for melanomas ≥3mm (OR=0.60, 95% CI=0.43, 0.83). Screening was associated with a 38% higher risk of being diagnosed with a thin invasive melanoma (≤0.75mm) (OR=1.38, 95% CI=1.22, 1.56). This is the strongest evidence to date that whole-body clinical skin examination reduces the incidence of thick melanoma. Because survival from melanoma is strongly related to tumour thickness, these results suggest that screening would reduce melanoma mortality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whole-body computer control interfaces present new opportunities to engage children with games for learning. Stomp is a suite of educational games that use such a technology, allowing young children to use their whole body to interact with a digital environment projected on the floor. To maximise the effectiveness of this technology, tenets of self-determination theory (SDT) are applied to the design of Stomp experiences. By meeting user needs for competence, autonomy, and relatedness our aim is to increase children's engagement with the Stomp learning platform. Analysis of Stomp's design suggests that these tenets are met. Observations from a case study of Stomp being used by young children show that they were highly engaged and motivated by Stomp. This analysis demonstrates that continued application of SDT to Stomp will further enhance user engagement. It also is suggested that SDT, when applied more widely to other whole-body multi-user interfaces, could instil similar positive effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early detection through whole-body Skin Self-Examination (wbSSE) may decrease mortality from melanoma. Using the Health Action Process Approach (HAPA) or Health Belief Model (HBM) we aimed to assess determinants of uptake of wbSSE in 410 men 50 years of older who participated in the control group of a randomized trial. Overall, the HAPA was a significantly better predictor of wbSSE compared to the HBM (p < .001). The construct of self-efficacy in the HBM was a significant predictor of future wbSSE (p = .001), while neither perceived threat (p = .584) nor outcome expectations (p = .220) were. In contrast, self-efficacy, perceived threat, and outcome expectations predicted intention to perform SSE, which predicted behavior (p = .015). The HAPA construct volitional self-efficacy was also associated with wbSSE (p = .046). The use of the HAPA model for future SSE interventions for this population is warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissociable processes for conscious perception (“what” processing) and guidance of action (“how” processing) have been identified in visual, auditory, and somatosensory systems. The present study was designed to find similar dissociation within whole-body movements in which the presence of vestibular information creates a unique perceptual condition. In two experiments, blindfolded participants walked along a linear path and specified the walked distance by verbally estimating it (“what” measure) and by pulling a length of tape that matched the walked distance (“how” measure). Although these two measures yielded largely comparable responses under a normal walking condition, variability in verbal estimates showed a qualitatively different pattern from that in tape-pulling when sensory input into walking was altered by having participants wear a heavy backpack. This suggests that the “what” versus “how” dissociation exists in whole-body movements as well, supporting a claim that it is a general principle with which perceptual systems are organized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of whole-body imaging at single-cell resolution enables system-level approaches to studying cellular circuits in organisms. Previous clearing methods focused on homogenizing mismatched refractive indices of individual tissues, enabling reductions in opacity but falling short of achieving transparency. Here, we show that an aminoalcohol decolorizes blood by efficiently eluting the heme chromophore from hemoglobin. Direct transcardial perfusion of an aminoalcohol-containing cocktail that we previously termed CUBIC coupled with a 10 day to 2 week clearing protocol decolorized and rendered nearly transparent almost all organs of adult mice as well as the entire body of infant and adult mice. This CUBIC-perfusion protocol enables rapid whole-body and whole-organ imaging at single-cell resolution by using light-sheet fluorescent microscopy. The CUBIC protocol is also applicable to 3D pathology, anatomy, and immunohistochemistry of various organs. These results suggest that whole-body imaging of colorless tissues at high resolution will contribute to organism-level systems biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we describe a protocol for advanced CUBIC (Clear, Unobstructed Brain/Body Imaging Cocktails and Computational analysis). The CUBIC protocol enables simple and efficient organ clearing, rapid imaging by light-sheet microscopy and quantitative imaging analysis of multiple samples. The organ or body is cleared by immersion for 1–14 d, with the exact time required dependent on the sample type and the experimental purposes. A single imaging set can be completed in 30–60 min. Image processing and analysis can take <1 d, but it is dependent on the number of samples in the data set. The CUBIC clearing protocol can process multiple samples simultaneously. We previously used CUBIC to image whole-brain neural activities at single-cell resolution using Arc-dVenus transgenic (Tg) mice. CUBIC informatics calculated the Venus signal subtraction, comparing different brains at a whole-organ scale. These protocols provide a platform for organism-level systems biology by comprehensively detecting cells in a whole organ or body.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extreme vibration has been reported for small, high speed craft in the maritime sector, with performance and health threatening effects on boat operators and crew. Musculoskeletal injuries are an enduring problem for high speed craft passengers. Spinal or joint injuries and neurological disorders may occur from repetitive pounding over rough water, continued vibration and single impact events. The risk from whole body vibration (WBV) induced through the small vessels mainly depends on time spent on the craft, which can’t be changed in a military scenario; as well as the number of shocks and jolts, and their magnitude and frequency. In the European Union for example, physical agents directives require all employers to control exposure to a number of physical agents including noise and vibration. The EC Vibration Directive 2002/44/EC then sets out regulations for the control of health and safety risks from the exposure of workers to hand arm vibration (HAV) and WBV in the workplace. Australia has exposure standards relating to WBV, AS 2670.1-2001 – Evaluation of human exposure to whole body vibration. This standard is identical to the ISO 2631-1:1997, Mechanical vibration and shock – Evaluation of human exposure to whole-body vibration. Currently, none of the jurisdictions in Australia have specific regulations for vibration exposures in workplaces. However vibration is mentioned to varying degrees in their general regulations, codes of practice and guidance material. WBV on high speed craft is normally caused by “continuous 'hammering' from short steep seas or wind against tide conditions. Shock on High Speed Craft is usually caused by random impacts. Military organisations need the knowledge to make informed decisions regarding their marine operations, compliance with legislation and potentially harmful health effects, and develop and implement appropriate counter-measures. Marine case studies in the UK such as published MAIB (Marine Accident Investigation Branch) reports show injuries that have occurred in operation, and subsequent MCA (Maritime Coastguard Agency) guidance is provided (MGN 436 (M+F), WHOLE-BODY VIBRATION: Guidance on Mitigating Against the Effects of Shocks and Impacts on Small Vessels. MCA, 2011). This paper proposes a research framework to study the origin, impact and pathways for prevention of WBV in small, high speed craft in a maritime environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coriandrum sativum, conhecido popularmente como coentro, é um vegetal usado na alimentação humana. Também é utilizado como planta medicinal para tratamento de diabetes, complicações gastrintestinais, e como um antiedêmico, antisséptico e emenagogo. Em investigações acerca dos efeitos do extrato de plantas, é importante a determinação de alguns parâmetros físico-químicos. Diversos modelos experimentais têm sido usados, inclusive com o emprego de radionuclídeos. Em procedimentos da Medicina Nuclear que auxiliam o diagnóstico de doenças, o tecnécio-99m (99mTc) é o radionuclídeo mais utilizado. Hemácias marcadas com 99mTc estão entre as várias estruturas celulares que podem ser marcadas com este radionuclídeo e usadas como radiofármaco. Para a marcação com 99mTc é necessária a presença de um agente redutor, e o mais utilizado é o cloreto estanoso (SnCl2). As terapias com drogas e condições de dieta além de doenças podem alterar a marcação de constituintes sanguíneos, bem como a biodistribuição de diferentes radiofármacos. A exposição às vibrações geradas por plataforma oscilatória produz exercícios de corpo inteiro. O objetivo deste estudo foi caracterizar a preparação de um extrato do Coriandrum sativum, através de parâmetros físico-químicos, verificar os efeitos desse produto natural na radiomarcação de constituintes sanguíneos e em associação à vibração gerada pela plataforma na biodistribuição de Na99mTcO4 e na concentração de alguns biomarcadores. O extrato de coentro teve a o pico de absorbância em 480 nm. O extrato de coentro foi inversamente correlacionado com a concentração na condutividade elétrica. Foi encontrado o maior valor de pH na menor concentração do extrato (0,5 mg/mL). Não houve uma alteração significativa na marcação de constituintes sanguíneos com 99mTc. E a associação do extrato de coentro e vibração gerada por plataforma com frequência de 12 Hz teve efeito no baço, como observado na fixação do radiofármaco nesse órgão e ação em alguns órgãos alternando a concentração de alguns biomarcadores. Em conclusão, parâmetros físico-químicos podem ser úteis para caracterizar o extrato estudado. Provavelmente, as propriedades redox associadas com substâncias desse extrato podem ser os responsáveis pela ausência do efeito na radiomarcação de constituintes sanguíneos. A determinação da captação do Na99mTcO4 em diferentes órgãos permite verificar que o extrato de coentro sozinho não foi capaz de interferir na biodistribuição do radiofármaco. Contudo o tratamento de animais com vibração gerada pela plataforma alterou significativamente a fixação do pertecnetato de sódio no baço e a concentração do colesterol, triglicerídeo, CK e bilirrubina.