987 resultados para Galaxy: bulge planetary nebulae


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Position estimation for planetary rovers has been typically limited to odometry based on proprioceptive measurements such as the integration of distance traveled and measurement of heading change. Here we present and compare two methods of online visual odometry suited for planetary rovers. Both methods use omnidirectional imagery to estimate motion of the rover. One method is based on robust estimation of optical flow and subsequent integration of the flow. The second method is a full structure-from-motion solution. To make the comparison meaningful we use the same set of raw corresponding visual features for each method. The dataset is an sequence of 2000 images taken during a field experiment in the Atacama desert, for which high resolution GPS ground truth is available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A critical requirement for safe autonomous navigation of a planetary rover is the ability to accurately estimate the traversability of the terrain. This work considers the problem of predicting the attitude and configuration angles of the platform from terrain representations that are often incomplete due to occlusions and sensor limitations. Using Gaussian Processes (GP) and exteroceptive data as training input, we can provide a continuous and complete representation of terrain traversability, with uncertainty in the output estimates. In this paper, we propose a novel method that focuses on exploiting the explicit correlation in vehicle attitude and configuration during operation by learning a kernel function from vehicle experience to perform GP regression. We provide an extensive experimental validation of the proposed method on a planetary rover. We show significant improvement in the accuracy of our estimation compared with results obtained using standard kernels (Squared Exponential and Neural Network), and compared to traversability estimation made over terrain models built using state-of-the-art GP techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This model is used to construct a control policy for navigation to a goal region in a terrain map built using an on-board RGB-D camera. The terrain includes flat ground, small rocks, and non-traversable rocks. We report the results of 200 simulated and 35 experimental trials that validate the approach and demonstrate the value of considering control uncertainty in maintaining platform safety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents an approach to improve and monitor the behavior of a skid-steering rover on rough terrains. An adaptive locomotion control generates speeds references to avoid slipping situations. An enhanced odometry provides a better estimation of the distance travelled. A probabilistic classification procedure provides an evaluation of the locomotion efficiency on-line, with a detection of locomotion faults. Results obtained with a Marsokhod rover are presented throughout the paper

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate Bayesian Computation’ (ABC) represents a powerful methodology for the analysis of complex stochastic systems for which the likelihood of the observed data under an arbitrary set of input parameters may be entirely intractable – the latter condition rendering useless the standard machinery of tractable likelihood-based, Bayesian statistical inference [e.g. conventional Markov chain Monte Carlo (MCMC) simulation]. In this paper, we demonstrate the potential of ABC for astronomical model analysis by application to a case study in the morphological transformation of high-redshift galaxies. To this end, we develop, first, a stochastic model for the competing processes of merging and secular evolution in the early Universe, and secondly, through an ABC-based comparison against the observed demographics of massive (Mgal > 1011 M⊙) galaxies (at 1.5 < z < 3) in the Cosmic Assembly Near-IR Deep Extragalatic Legacy Survey (CANDELS)/Extended Groth Strip (EGS) data set we derive posterior probability densities for the key parameters of this model. The ‘Sequential Monte Carlo’ implementation of ABC exhibited herein, featuring both a self-generating target sequence and self-refining MCMC kernel, is amongst the most efficient of contemporary approaches to this important statistical algorithm. We highlight as well through our chosen case study the value of careful summary statistic selection, and demonstrate two modern strategies for assessment and optimization in this regard. Ultimately, our ABC analysis of the high-redshift morphological mix returns tight constraints on the evolving merger rate in the early Universe and favours major merging (with disc survival or rapid reformation) over secular evolution as the mechanism most responsible for building up the first generation of bulges in early-type discs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the purposes of obtaining a number of components with nearly identical thickness distributions over the substrate area and of minimizing the inhomogeneities of the film, it is logical to presume that a substrate rotating on its own axis and revolving around another axis will give more uniformity in film thickness than a substrate only revolving around one axis. In relation to the practical applications, an investigation has been undertaken to study the refinement that can be achieved by using a planar planetary substrate holder. It is shown theoretically that the use of the planetary substrate holder under ideal conditions of source and geometry does not offer any further improvement in uniformity of thickness over the conventional rotary work-holder. It is also shown that the geometrical parameters alone have little influence over the uniformity achieved on a planetary substrate, because of the complex cyclidal motion of any point on it. However, for any given geometry, a non-integral speed ratio of the planetary substrate and the work-holder shows considerably less variation in thickness over the substrate area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We model the shape and density profile of the dark matter halo of the low surface brightness, superthin galaxy UGC 7321, using the observed rotation curve and the H i scale height data as simultaneous constraints. We treat the galaxy as a gravitationally coupled system of stars and gas, responding to the gravitational potential of the dark matter halo. An isothermal halo of spherical shape with a core density in the range of View the MathML source and a core radius between 2.5 and 2.9 kpc, gives the best fit to the observations for a range of realistic gas parameters assumed. We find that the best-fit core radius is only slightly higher than the stellar disc scale length (2.1 kpc), unlike the case of the high surface brightness galaxies where the halo core radius is typically 3–4 times the disc scale length of the stars. Thus our model shows that the dark matter halo dominates the dynamics of the low surface brightness, superthin galaxy UGC 7321 at all radii, including the inner parts of the galaxy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The planet Mars is the Earth's neighbour in the Solar System. Planetary research stems from a fundamental need to explore our surroundings, typical for mankind. Manned missions to Mars are already being planned, and understanding the environment to which the astronauts would be exposed is of utmost importance for a successful mission. Information of the Martian environment given by models is already now used in designing the landers and orbiters sent to the red planet. In particular, studies of the Martian atmosphere are crucial for instrument design, entry, descent and landing system design, landing site selection, and aerobraking calculations. Research of planetary atmospheres can also contribute to atmospheric studies of the Earth via model testing and development of parameterizations: even after decades of modeling the Earth's atmosphere, we are still far from perfect weather predictions. On a global level, Mars has also been experiencing climate change. The aerosol effect is one of the largest unknowns in the present terrestrial climate change studies, and the role of aerosol particles in any climate is fundamental: studies of climate variations on another planet can help us better understand our own global change. In this thesis I have used an atmospheric column model for Mars to study the behaviour of the lowest layer of the atmosphere, the planetary boundary layer (PBL), and I have developed nucleation (particle formation) models for Martian conditions. The models were also coupled to study, for example, fog formation in the PBL. The PBL is perhaps the most significant part of the atmosphere for landers and humans, since we live in it and experience its state, for example, as gusty winds, nightfrost, and fogs. However, PBL modelling in weather prediction models is still a difficult task. Mars hosts a variety of cloud types, mainly composed of water ice particles, but also CO2 ice clouds form in the very cold polar night and at high altitudes elsewhere. Nucleation is the first step in particle formation, and always includes a phase transition. Cloud crystals on Mars form from vapour to ice on ubiquitous, suspended dust particles. Clouds on Mars have a small radiative effect in the present climate, but it may have been more important in the past. This thesis represents an attempt to model the Martian atmosphere at the smallest scales with high resolution. The models used and developed during the course of the research are useful tools for developing and testing parameterizations for larger-scale models all the way up to global climate models, since the small-scale models can describe processes that in the large-scale models are reduced to subgrid (not explicitly resolved) scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large proportion of our knowledge about the surfaces of atmosphereless solar-system bodies is obtained through remote-sensing measurements. The measurements can be carried out either as ground-based telescopic observations or space-based observations from orbiting spacecraft. In both cases, the measurement geometry normally varies during the observations due to the orbital motion of the target body, the spacecraft, etc.. As a result, the data are acquired over a variety of viewing and illumination angles. Surfaces of planetary bodies are usually covered with a layer of loose, broken-up rock material called the regolith whose physical properties affect the directional dependence of remote-sensed measurements. It is of utmost importance for correct interpretation of the remote-sensed data to understand the processes behind this alteration. In the thesis, the multi-angular effects that the physical properties of the regolith have on remote-sensing measurements are studied in two regimes of electromagnetic radiation, visible to near infrared and soft X-rays. These effects are here termed generally the regolith effects in remote sensing. Although the physical mechanisms that are important in these regions are largely different, notable similarities arise in the methodology that is used in the study of the regolith effects, including the characterization of the regolith both in experimental studies and in numerical simulations. Several novel experimental setups have been constructed for the thesis. Alongside the experimental work, theoretical modelling has been carried out, and results from both approaches are presented. Modelling of the directional behaviour of light scattered from a regolith is utilized to obtain shape and spin-state information of several asteroids from telescopic observations and to assess the surface roughness and single-scattering properties of lunar maria from spacecraft observations. One of the main conclusions is that the azimuthal direction is an important factor in detailed studies of planetary surfaces. In addition, even a single parameter, such as porosity, can alter the light scattering properties of a regolith significantly. Surface roughness of the regolith is found to alter the elemental fluorescence line ratios of a surface obtained through planetary soft X-ray spectrometry. The results presented in the thesis are among the first to report this phenomenon. Regolith effects need to be taken into account in the analysis of remote-sensed data, providing opportunities for retrieving physical parameters of the surface through inverse methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present observations of radio recombination lines (RRL) from the starburst galaxy Arp 220 at 8.1 GHz (H92 alpha) and 1.4 GHz (H167 alpha and H165 alpha) and at 84 GHz (H42 alpha), 96 GHz (H40 alpha) and 207 GHz (H31 alpha) using the Very Large Array and the IRAM 30 m telescope, respectively. RRLs were detected at all the frequencies except 1.4 GHz, where a sensitive upper limit was obtained. We also present continuum flux measurements at these frequencies as well as at 327 MHz made with the VLA. The continuum spectrum, which has a spectral index alpha similar to -0.6 (S-nu proportional to nu(alpha)) between 5 and 10 GHz, shows a break near 1.5 GHz, a prominent turnover below 500 MHz, and a flatter spectral index above 50 GHz. We show that a model with three components of ionized gas with different densities and area covering factors can consistently explain both RRL and continuum data. The total mass of ionized gas in the three components is 3.2 x 10(7) M., requiring 3 x 10(5) O5 stars with a total Lyman continuum production rate N-Lyc similar to 1.3 x 10(55) photons s(-1). The ratio of the expected to observed Br alpha and Br gamma fluxes implies a dust extinction A(V) similar to 45 mag. The derived Lyman continuum photon production rate implies a continuous star formation rate (SFR) averaged over the lifetime of OB stars of similar to 240 M yr(-1). The Lyman continuum photon Production rate of similar to 3% associated with the high-density H II regions implies a similar SFR at recent epochs (t < 10(5) yr). An alternative model of high-density gas, which cannot be excluded on the basis of the available data, predicts 10 times higher SFR at recent epochs. If confirmed, this model implies that star formation in Arp 220 consists of multiple starbursts of very high SFR (few times 10(3) M. yr(-1)) and short duration (similar to 10(5) yr). The similarity of IR excess, L-IR/L-Ly alpha similar to 24, in Arp 220 to values observed in starburst galaxies shows that most of the high luminosity of Arp 220 is due to the ongoing starburst rather than to a hidden active galactic nucleus (AGN). A comparison of the IR excesses in Arp 220, the Galaxy, and M33 indicates that the starburst in Arp 220 has an initial mass function that is similar to that in normal galaxies and has a duration longer than 107 yr. If there was no infall of gas during this period, then the star formation efficiency (SFE) in Arp 220 is similar to 50%. The high SFR and SFE in Arp 220 is consistent with their known dependences on mass and density of gas in star-forming regions of normal galaxies.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the hydrodynamic evolution of gas in the interstellar medium of the host galaxy of a quasar due to Compton heating by the QSO radiation. We show that a Lagrangean formulation of the problem is necessary. It is found that the "hydrodynamic time scale" becomes important compared to the Compton heating time scale. We also relax the "single fluid" approximation by considering the existence of clouds and taking into account the mass loss from stars. The results predict star burst activity, and thus we explain the blue colors of the active galaxies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From the available H I data on spiral galaxies in three rich Abell clusters and the Virgo Cluster, it is shown that galaxies with medium to large optical sizes tend to be more severely deficient in atomic hydrogen than the small galaxies. This is so both in terms of the fractional number of galaxies that are deficient and the amount of gas lost by a galaxy. The fraction of H I-deficient galaxies increases with size over most of the size range, saturating or dropping only for the largest galaxies. A comparative study is made of various currently accepted gas removal mechanisms, namely those which are a result of galaxy-intracluster medium interactions, e.g., ram pressure stripping, as well as those due to galaxy-galaxy interactions, i.e., collisions and tidal interactions. It is shown that, with the exception of tidal interactions, all of these mechanisms would produce a size dependence in H I deficiency that is the opposite of that observed. That is, the gas in the largest galaxies would be the least affected by these mechanisms. However, if there is significant mass segregation, these processes may give the trends observed in the size dependence of H I deficiency.