974 resultados para GROWTH REGULATORS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cell cycle comprise the four phases of, G1, S-phase, G2 and mitosis. Two critical transitions are G1/S and G2/M; the latter is regulated by WEE1 kinase and CDC25 phosphatases. The scope of this thesis was to investigate the regulation of the G2/M transition of the cell cycle by WEE1 and CDC25, and how these genes interface with plant growth regulators in Arabidopsis thaliana. In Arabidopsis roots, the frequency of lateral roots was found to be increased by ectopic expression of Schizosaccharomyces pombe (Sp)cdc25e and reduced by Arath;WEE1 expression. I examined the effect of Arath;WEE1 and Spcdc25 on induction of shoots and roots in Arabidopsis hypocotyls in vitro. Hypocotyl explants from two over-expressing WEE1 lines , three T-DNA insertion lines and two expressing cdc25 (Spcdc25e) lines together with wild type (WT) were cultured on two-way gradients of kinetin (Kin) and naphthyl acetic acid (NAA). Below a threshold concentration of NAA (100 ng ml-1), WEE1 repressed morphogenesis in vitro, whereas at all NAA/Kin combinations Spcdc25 promoted morphogenesis (particularly root formation) over and above that in WT. Loss of function wee1-1 cultures were very similar to WT. Quantitative data indicated a significant increase in the frequency of root formation in Spcdc25e cultures compared with WT particularly at low Kin concentrations, and WEE1oe’s repressive effect was overcome by NAA but not Kin. In conclusion, WEE1 has a repressive effect on morphogenesis in vitro that can be overcome by auxin whereas Spcd25 by-passes a cytokinin requirement for the induction of morphogenesis in vitro. The role of CDC25 and WEE1 in DNA damage responses was also analysed. Two over-expressing Arath;CDC25 lines and T-DNA mutants showed no difference to WT either in standard conditions or zeocin-supplemented treatments. However, root length was longer in Arath;CDC25oe lines treated with hydroxyurea (HU) and lateral root number was increased compared to WT. This suggests a differential response of Arath;CDC25oe in the DNA replication (HU-induced) and DNA damage (zeocin-induced) checkpoints (Chapter 5). Finally the roles of WEE1 and CDC25 in cell cycle regulation were examined using tobacco TBY-2 cell cultures expressing Arath;WEE1, Nicotiana tabacum (Nicta)WEE1 or Arath;CDC25. Whilst Nicta;WEE1 lengthened G2 of the cell cycle, Arath;WEE1 had an unusual effect of shortening G2 phase and Arath;CDC25 had no observable effect (Chapter 6).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Entry into mitosis is regulated by cyclin dependent kinases that in turn are phosphoregulated. In most eukaryotes, phosphoregulation is through WEE1 kinase and CDC25 phosphatase. In higher plants a homologous CDC25 gene is unconfirmed and hence the mitotic inducer Schizosaccharomyces pombe (Sp) cdc25 has been used as a tool in transgenic plants to probe cell cycle function. Expression of Spcdc25 in tobacco BY-2 cells accelerates entry into mitosis and depletes cytokinins; in whole plants it stimulates lateral root production. Here we show, for the first time, that alterations to cytokinin and ethylene signaling explain the rooting phenotype elicited by Spcdc25 expression in Arabidopsis. Results Expressing Spcdc25 in Arabidopsis results in increased formation of lateral and adventitious roots, a reduction of primary root width and more isodiametric cells in the root apical meristem (RAM) compared with wild type. Furthermore it stimulates root morphogenesis from hypocotyls when cultured on two way grids of increasing auxin and cytokinin concentrations. Microarray analysis of seedling roots expressing Spcdc25 reveals that expression of 167 genes is changed by > 2-fold. As well as genes related to stress responses and defence, these include 19 genes related to transcriptional regulation and signaling. Amongst these was the up-regulation of genes associated with ethylene synthesis and signaling. Seedlings expressing Spcdc25 produced 2-fold more ethylene than WT and exhibited a significant reduction in hypocotyl length both in darkness or when exposed to 10 ppm ethylene. Furthermore in Spcdc25 expressing plants, the cytokinin receptor AHK3 was down-regulated, and endogenous levels of iPA were reduced whereas endogeous IAA concentrations in the roots increased. Conclusions We suggest that the reduction in root width and change to a more isodiametric cell phenotype in the RAM in Spcdc25 expressing plants is a response to ethylene over-production. The increased rooting phenotype in Spcdc25 expressing plants is due to an increase in the ratio of endogenous auxin to cytokinin that is known to stimulate an increased rate of lateral root production. Overall, our data reveal important cross talk between cell division and plant growth regulators leading to developmental changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Given the economic importance of Jatropha curcas, and its limited availability in the wild, it would be desirable to establish plantations ofthe tree so as to obtain assured supply of raw material for extraction of phytochemicals, and seeds for production of biodiesel. However both seed propagation as well as propagation by cuttings is unsatisfactory in this tree species. Seeds have poor viability and are genetically heterozygous leading to genetic variability in terms of growth, biomass, seed yield, and oil content. Stern cuttings have poor roots and the trees are easily uprooted. Tissue culture techniques could possibly be gainfully employed in the propagation of elite plants ofJaIropha. When plant tissue is passaged through in vitro culture, there is possibility of induction of variations. An estimation of somaclonal variability is useful in a determination of culture protocols. Molecular markers could be employed to estimate the amount of variations induced in callus and regenerants by different honnonal combinations used in culture. In this context the present study aims to develop an in vitro propagation protocol for the production of plantlets and to evaluate the variation induced in callus and regenerants in comparison with mother plant by the use of molecular markers and by studying phytochemicals and bio active compounds present in callus and regenerated plants

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die hier vorliegende Arbeit wurde im Rahmen eines europäischen Projektes mit dem Titel „Improving Fraxinus (Ash) productivity for European needs by testing, selection, propagation and promotion of improved genetic resources“ an der Niedersächsischen Forstlichen Versuchsanstalt, Abteilung Waldgenressourcen erstellt. Im Rahmen des Projektes wurden 62 Plusbäume aus einem 15 Jahre alten europäischen Herkunfts-/ Nachkommenschaftsversuch in den Niedersächsischen Forstämtern Bovenden und Dannenberg nach den Kriterien Stammform und Wuchsleistung für die vegetative Vermehrung ausgewählt. Ziel dieser Arbeit war die Optimierung bestehender in vitro Protokolle sowie die Entwicklung eines bisher noch nicht existierenden Kryokonservierungsprotokolls für in vitro Sprossspitzen. Im ersten Teil dieser Arbeit wird die Entwicklung des in vitro Protokolls für Fraxinus excelsior dargestellt. Die Optimierung der Methoden zur Etablierung, Vermehrung und Bewurzelung erfolgte durch Versuchsreihen mit unterschiedlichen Klonen, so dass insgesamt 26 der selektierten Plusbäume erfolgreich in vitro etabliert werden konnten. Achselknospen frischer Triebe der Pfropflinge der Mutterbäume stellten die beste Explantatquelle dar. Die Explantate wurden mit 0,2 % Quecksilberchlorid (HgCl2) oberflächensterilisiert bevor sie auf hormonfreies Woody Plant Medium (WPM) transferiert wurden. Nach zwei Wochen erfolgte ein Transfer auf WPM mit 4 mg/l 6-Benzylaminopurine (BAP) und 0,15 mg/l Indole-3-butyric acid (IBA). Die besten Vermehrungsraten wurden auf WPM mit 4 mg/l BAP, 0,15 mg/l IBA und 0,01 mg/l TDZ und 0,7 % Agar in Honiggläsern mit einem Plastikdeckel erzielt. Als Bewurzelungsmedium wurde 0,5 konzentriertes Murashige und Skoog (MS) Medium mit 2 mg/l IBA, 0,25 mg/l BAP und 0,8 % Agar verwandt. Im zweiten Teil der Arbeit werden die Versuchsreihen zur Entwicklung des Kryokonservierungsprotokolls von in vitro Sprossspitzen dargestellt. Zur Entwicklung der Methode wurden die Vorbehandlungsbedingungen verbessert und zwei Techniken, die Alginat- / Dehydrati-onsmethode und die Vitrifikationsmethode mit Hilfe der sogenannten PVS2-Lösung (Plant Vitrification solution number 2) getestet. Die optimierte PVS2-Methode erwies sich als die für Esche besser geeignete Technik und ließ sich erfolgreich zur Kryokonservierung juveniler und adulter Kulturen anwenden. Die Regenerationsraten lagen zwischen 50 und 100 % für juvenile bzw. 50 und 80 % für adulte Kulturen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

center dot Background and Aims The control of dormancy in yam (Disocorea spp.) tubers is poorly understood and attempts to shorten the long dormant period (i.e. cause tubers to sprout or germinate much earlier) have been unsuccessful. The aim of this study was to identify and define the phases of dormancy in Dioscorea rotundata tubers, and to produce a framework within which dormancy can be more effectively studied. center dot Methods Plants of 'TDr 131' derived from tissue culture were grown in a glasshouse simulating temperature and photoperiod at Ibadan (7 degrees N), Nigeria to produce tubers. Tubers were sampled on four occasions: 30 d before shoot senescence (149 days after planting, DAP), at shoot senescence (179 DAP), and twice during storage at a constant 25 degrees C (269 and 326 DAP). The development of the apical shoot bud was described from tissue sections. In addition, the responsiveness of shoot apical bud development to plant growth regulators (gibberellic acid, 2-chloroethanol and thiourea) applied to excised tuber sections was also examined 6 and 12 d after treatment. center dot Key Results and Conclusions Three phases of tuber dormancy are proposed: Phase I, from tuber initiation to the appearance of the tuber germinating meristem; Phase II, from the tuber germinating meristem to initiation of foliar primordium; and Phase III, from foliar primordium to appearance of the shoot bud on the surface of the tuber. Phase I is the longest phase (approx. 220 d in 'TDr 131'), is not affected by PGRs and is proposed to be an endo-dormant phase. Phases II and III are shorter (< 70 d in total), are influenced by PGRs and environmental conditions, and are therefore endo-/eco-dormant phases. To manipulate dormancy to allow off-season planting and more than one generation per year requires that the duration of Phase I is shortened.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The grapevine moth Lobesia botrana (Denis & Schiffermuller) (Lepidoptera: Tortricidae) is a key pest of grapevines in Greece. As part of a broader study on integrated pest management, the effects were investigated of different cultural methods on the establishment and survival of L. botrana, specifically: application of different nitrogen levels (30 and 100 units of ammonium sulfate or 70 units of Agrobiosol); summer leaf and shoot pruning; application of growth regulators (Regalis, probexadione-calcium; or Falgro, gibberellic acid). There were significant differences among the three levels of N application. The lowest L. botrana infestation rates were found in plots treated with 30 units of (NH4)(2)SO4 and plots that received some summer pruning. Following the application of plant growth regulators, the lowest L. botrana infestation levels occurred in the plots treated with Regalis or Falgro at the manufacturers' recommended concentrations. On vines where growth regulators had been applied, the clusters had fewer berries than those not treated with growth regulators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and Aims The control of dormancy in yam (Disocorea spp.) tubers is poorly understood and attempts to shorten the long dormant period (i.e. cause tubers to sprout or germinate much earlier) have been unsuccessful. The aim of this study was to identify and define the phases of dormancy in Dioscorea rotundata tubers, and to produce a framework within which dormancy can be more effectively studied. center dot Methods Plants of 'TDr 131' derived from tissue culture were grown in a glasshouse simulating temperature and photoperiod at Ibadan (7 degrees N), Nigeria to produce tubers. Tubers were sampled on four occasions: 30 d before shoot senescence (149 days after planting, DAP), at shoot senescence (179 DAP), and twice during storage at a constant 25 degrees C (269 and 326 DAP). The development of the apical shoot bud was described from tissue sections. In addition, the responsiveness of shoot apical bud development to plant growth regulators (gibberellic acid, 2-chloroethanol and thiourea) applied to excised tuber sections was also examined 6 and 12 d after treatment. center dot Key Results and Conclusions Three phases of tuber dormancy are proposed: Phase I, from tuber initiation to the appearance of the tuber germinating meristem; Phase II, from the tuber germinating meristem to initiation of foliar primordium; and Phase III, from foliar primordium to appearance of the shoot bud on the surface of the tuber. Phase I is the longest phase (approx. 220 d in 'TDr 131'), is not affected by PGRs and is proposed to be an endo-dormant phase. Phases II and III are shorter (< 70 d in total), are influenced by PGRs and environmental conditions, and are therefore endo-/eco-dormant phases. To manipulate dormancy to allow off-season planting and more than one generation per year requires that the duration of Phase I is shortened.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dormancy is a mechanism that regulates the timing of sprouting (germination) of affected plant parts as well as ensures that the food quality of edible parts is maintained in storage until the following growing season. In yam, however, little is known about the control of tuber initiation or tuber dormancy. The objective of this study was to determine the effects of selected plant growth regulators (PGRs) on tuber initiation and dormancy, using an in vitro system. In two replicated experiments, 2-chloroethylphosphonic acid (ethephon, an ethylene source), abscisic acid (ABA) and gibberellin (GA3) – and their inhibitors silver nitrate, fluridone and 2-chloroethyl-trimethylammonium chloride, respectively – were added at two concentrations to the culture medium prior to explant culture. Dates of micro-tuber initiation and sprouting (end of dormancy) and tuber number were recorded. In the control (no PGR) in Experiment 1, micro-tubers were initiated at the base of the stem after 176 days and sprouted 235 days later, that is 411 days after culturing. Most PGR treatments had only small effects (±30 days) on the duration of dormancy and the time of micro-tuber initiation. However, in GA3 micro-tuber initiation occurred after 76 days, about 100 days earlier than in the control, whereas fluridone affected the position of micro-tubers and duration of dormancy. With fluridone treatments, tubers were found at the base of the stem (normal position) and on lower and upper nodes. Lower node tubers sprouted within 225 days of culturing compared with about 420 days after culturing at other nodal positions and in other PGR treatments. These data suggest an important role for ABA and gibberellic acid in yam micro-tuber initiation and the induction of dormancy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over the last decade, major advances have been made in our understanding of how plants sense, signal, and respond to soil phosphorus (P) availability (Amtmann et al., 2006; White and Hammond, 2008; Nilsson et al., 2010; Yang and Finnegan, 2010; Vance, 2010; George et al., 2011). Previously, we have reviewed the potential for shoot-derived carbohydrate signals to initiate acclimatory responses in roots to low P availability. In this context, these carbohydrates act as systemic plant growth regulators (Hammond and White, 2008). Photosynthate is transported primarily to sink tissues as Suc via the phloem. Under P starvation, plants accumulate sugars and starch in their leaves. Increased loading of Suc to the phloem under P starvation primarily functions to relocate carbon resources to the roots, which increases their size relative to the shoot (Hermans et al., 2006). The translocation of sugars via the phloem also has the potential to initiate sugar signaling cascades that alter the expression of genes involved plant responses to low P availability. These include optimizing root biochemistry to acquire soil P, through increased expression and activity of inorganic phosphate (Pi) transporters, the secretion of acid phosphatases and organic acids to release P from the soil, and the optimization of internal P use (Hammond and White, 2008). Here, we provide an Update to the field of plant signaling responses to low P availability and the interactions with sugar signaling components. Advances in the P signaling pathways and the roles of hormones in signaling plant responses to low P availability are also reviewed, and where possible their interactions with potential sugar signaling pathways.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the process of lateral organ development after plant decapitation, cell division and differentiation occur in a balanced manner initiated by specific signaling, which triggers the reentrance into the cell cycle. Here, we investigated short-term variations in the content of some endogenous signals, such as auxin, cytokinins (Cks), and other mitogenic stimuli (sucrose and glutamate), which are likely correlated with the cell cycle reactivation in the axillary bud primordium of pineapple nodal segments. Transcript levels of cell cycle-associated genes, CycD2;1, and histone H2A were analyzed. Nodal segments containing the quiescent axillary meristem cells were cultivated in vitro during 24 h after the apex removal and de-rooting. From the moment of stem apex and root removal, decapitated nodal segment (DNS) explants showed a lower indol-3-acetic acid (IAA) concentration than control explants, and soon after, an increase of endogenous sucrose and iP-type Cks were detected. The decrease of IAA may be the primary signal for cell cycle control early in G1 phase, leading to the upregulation of CycD2;1 gene in the first h. Later, the iP-type Cks and sucrose could have triggered the progression to S-phase since there was an increase in H2A expression at the eighth h. DNS explants revealed substantial increase in Z-type Cks and glutamate from the 12th h, suggesting that these mitogens could also operate in promoting pineapple cell cycle progression. We emphasize that the use of non-synchronized tissue rather than synchronous cell suspension culture makes it more difficult to interpret the results of a dynamic cell division process. However, pineapple nodal segments cultivated in vitro may serve as an interesting model to shed light on apical dominance release and the reentrance of quiescent axillary meristem cells into the cell cycle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acca sellowiana (Berg.) Burr. is a native Myrtaceae from southern Brazil and Uruguay, now the subject of a domestication and breeding program. Biotechnological tools have been used to assist in this program. The establishment of a reliable protocol of somatic embryogenesis has been pursued, with a view to capturing and fixing genetic gains. The rationale behind this work relies on the fact that deepening comprehension of the general metabolism of zygotic embryogenesis may certainly improve the protocol for somatic embryogenesis. Thus, in the present work we studied the accumulation of protein, total sugars, starch, amino acids, polyamines (PAs), IAA and ABA, in different stages of A. sellowiana zygotic embryogenesis. Starch is the predominant storage compound during zygotic embryo development. Increased synthesis of amino acids in the cotyledonary stage, mainly of asparagine, was observed throughout development. Total free PAs showed increased synthesis, whereas total conjugated PAs were mainly observed in the early developmental stages. IAA decreased and ABA increased with the progression from early to late embryogenesis. Besides providing basic information on the morphophysiological and biochemical changes of zygotic embryogenesis, the results here obtained may provide adequate strategies towards the modulation of somatic embryogenesis in this species as well as in other woody angiosperms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tissue culture techniques were applied for micropropagation of the red alga Kappaphycus alvarezii in order to select the best strain and experimental system for in vitro culture. Five strains were tested: brown (BR), green (GR) and red (RD) tetrasporophytes, brown female gametophyte (BFG), and a strain originating from tetraspore germination (""Edison de Paula"", EP). The effects of three culture media were tested on callus formation, regeneration from explants and from callus in the three tetrasporophytic and EP strains: seawater enriched with half-strength of von Stosch`s (VS 50) and Guillard & Ryther`s (F/2 50) solutions, plus synthetic ASP 12-NTA medium, with or without gelling agent. Explants of the EP strain were treated with glycerol and the phytoregulators indole-3-acetic acid (IAA); 2,4-diclorophenoxyacetic acid (2,4-D); and benzylaminopurine (BA), alone or in combination. The effects of colchicine (0.01%) during 24, 48, 72 hours and 14 days were analyzed in the BFG and EP strains. The EP strain showed the highest percentage of explants forming callus and regeneration from explants in VS 50, indicating its high potential for micropropagation in comparison to the other strains. Regeneration from callus was very rare. Treatments with glycerol and IAA:BA (5:1 mg L(-1)) stimulated the regeneration from explants. Significant differences were observed in the percentages of regeneration of EP strain explants treated with colchicine for 14 days. Our results indicate that IAA and BA stimulated the regeneration process, and that colchicine produced explants with high potential for regeneration, being useful for improving the micropropagation of K. alvarezii.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and Aims Plant growth regulators play an important role in seed germination. However, much of the current knowledge about their function during seed germination was obtained using orthodox seeds as model systems, and there is a paucity of information about the role of plant growth regulators during germination of recalcitrant seeds. In the present work, two endangered woody species with recalcitrant seeds, Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm), native to the Atlantic Rain Forest, Brazil, were used to study the mobilization of polyamines (PAs), indole-acetic acid (IAA) and abscisic acid (ABA) during seed germination. Methods Data were sampled from embryos of O. odorifera and embryos and megagametophytes of A. angustifolia throughout the germination process. Biochemical analyses were carried out in HPLC. Key Results During seed germination, an increase in the (Spd + Spm) : Put ratio was recorded in embryos in both species. An increase in IAA and PA levels was also observed during seed germination in both embryos, while ABA levels showed a decrease in O. odorifera and an increase in A. angustifolia embryos throughout the period studied. Conclusions The (Spd + Spm) : Put ratio could be used as a marker for germination completion. The increase in IAA levels, prior to germination, could be associated with variations in PA content. The ABA mobilization observed in the embryos could represent a greater resistance to this hormone in recalcitrant seeds, in comparison to orthodox seeds, opening a new perspective for studies on the effects of this regulator in recalcitrant seeds. The gymnosperm seed, though without a connective tissue between megagametophyte and embryo, seems to be able to maintain communication between the tissues, based on the likely transport of plant growth regulators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A short and efficient approach to a range of new chiral and achiral functionalized (E)-enaminopyran-2,4-diones starting with commercially available dehydroacetic acid is described. The phytotoxic properties of these (E)-enaminopyran-2,4-diones were evaluated by their ability to interfere with the growth of Sorghum bicolor and Cucumis sativus seedlings. A different sensitivity of the two crops was evident with the (E)-enaminopyran-2,4-diones. The most active compounds were also tested against two weeds, Ipomoea grandifolia and Brachiaria decumbens. To the best of our knowledge, this is the first report describing enaminopyran-2,4-diones as potential plant growth regulators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In vitro morphogenesis and cell suspension culture establishment in Piper solmsianum C. DC. (Piperaceae)). Piper solmsianum is a shrub from Southeast Brazil in which many biologically active compounds were identified. The aim of this work was to establish a cell suspension culture system for this species. With this in mind, petiole and leaf explants obtained from in vitro plantlets were cultured in the presence of different plant growth regulator combinations (IAA, NAA, 2,4-D and BA). Root and indirect shoot adventitious formation, detected by histological analysis, was observed. Besides the different combinations of plant growth regulators, light regime and the supplement of activated charcoal (1.5 mg.l(-1)) were tested for callus induction and growth. Cultures maintained in light, on a 0.2 mg.l(-1) 2,4-D and 2 mg.l(-1) BA supplemented medium, and in the absence of activated charcoal, showed the highest calli fresh matter increment. From a callus culture, cell suspension cultures were established and their growth and metabolite accumulation studied. The achieved results may be useful for further characterization of the activated secondary metabolites pathways in in vitro systems of P. solmsianum.