917 resultados para GOLD NANOSHELLS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metastable, active, or nonequilibrium states due to the presence of abnormal structures and various types of defects are well known in metallurgy. The role of such states at gold surfaces in neutral aqueous media (an important electrode system in the microsensor area) was explored using cyclic voltammetry. It was demonstrated that, as postulated in earlier work from this laboratory, there is a close relationship between premonolayer oxidation, multilayer hydrous oxide reduction and electrocatalytic behaviour in the case of this and other metal electrode systems. Some of the most active, and therefore most important, entities at surfaces (e.g., metal adatoms) are not readily imageable or detectable by high resolution surface microscopy techniques. Cyclic voltammetry, however, provides significant, though not highly specific, information about such species. The main conclusion is that further practical and theoretical work on active states of metal surfaces is highly desirable as their behaviour is not simple and is of major importance in many electrocatalytic processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Galvanic replacement represents a highly significant process for the fabrication of bimetallic materials, but to date its application has been limited to either modification of large area metal surfaces or nanoparticles in solution. Here, the localised surface modification of copper and silver substrates with gold through the galvanic replacement process is reported. This was achieved by generation of a localised flux of AuCl4− ions from a gold ultramicroelectrode tip which interacts with the unbiased substrate of interest. The extent of modification with gold can be controlled through the tip–substrate distance and electrolysis time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The galvanic replacement reaction has received considerable interest due to the creation of novel bimetallic nanomaterials that minimise the use of expensive metals while maintaining enhanced electrocatalytic properties for certain reactions. In this work we investigate the galvanic replacement of electrochemically synthesised iron nanocubes on glassy carbon, with gold and palladium. The resultant nanomaterials demonstrate quite a difference in morphology; the original cuboid like template is maintained in the case of gold but destroyed when palladium is used. The electrochemical and electrocatalytic behaviours of these materials are reported for reactions such as methanol oxidation, hydrogen evolution and oxygen reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nanostructured gold surface consisting of closely packed outwardly growing spikes is investigated for the electrochemical detection of dopamine and cytochrome c. A significant electrocatalytic effect for the electrooxidation of both dopamine and ascorbic acid at the nanostructured electrode was found due to the presence of surface active sites which allowed the detection of dopamine in the presence of excess ascorbic acid to be achieved by differential pulse voltammetry. By simple modification with a layer of Nafion, the enhanced electrocatalytic properties of the nanostructured surface was maintained while increasing the selectivity of dopamine detection in the presence of interfering species such as excess ascorbic and uric acids. Also, upon modification of the nanostructured surface with a monolayer of cysteine, the electrochemical response of immobilised cytochrome c in two distinct conformations was observed. This opens up the possibility of using such a nanostructured surface for the characterisation of other biomolecules and in bio-electroanalytical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a rapid synthesis of gold nanoparticles using hydroquinone as a reducing agent under acidic conditions without the need for precursor seed particles. The nanoparticle formation process is facilitated by the addition of NaOH to a solution containing HAuCl4 and hydroquinone to locally change the pH; this enhances the reducing capability of hydroquinone to form gold nucleation centres, after which further growth of gold can take place through an autocatalytic mechanism. The stability of the nanoparticles is highly dependent on the initial solution pH, and both the concentration of added NaOH and hydroquinone present in solution. The gold nanoparticles were characterized by UV–visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, atomic force microscopy, dynamic light scattering, and zeta potential measurements. It was found that under optimal conditions that stable aqueous suspensions of 20 nm diameter nanoparticles can be achieved where benzoquinone, the oxidized product of hydroquinone, acts as a capping agent preventing nanoparticles aggregation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Even though gold is the noblest of metals, a weak chemisorber and is regarded as being quite inert, it demonstrates significant electrocatalytic activity in its nanostructured form. It is demonstrated here that nanostructured and even evaporated thin films of gold are covered with active sites which are responsible for such activity. The identification of these sites is demonstrated with conventional electrochemical techniques such as cyclic voltammetry as well as a large amplitude Fourier transformed alternating current (FT-ac) method under acidic and alkaline conditions. The latter technique is beneficial in determining if an electrode process is either Faradaic or capacitive in nature. The observed behaviour is analogous to that observed for activated gold electrodes whose surfaces have been severely disrupted by cathodic polarisation in the hydrogen evolution region. It is shown that significant electrochemical oxidation responses occur at discrete potential values well below that for the formation of the compact monolayer oxide of bulk gold and are attributed to the facile oxidation of surface active sites. Several electrocatalytic reactions are explored in which the onset potential is determined by the presence of such sites on the surface. Significantly, the facile oxidation of active sites is used to drive the electroless deposition of metals such as platinum, palladium and silver from their aqueous salts on the surface of gold nanostructures. The resultant surface decoration of gold with secondary metal nanoparticles not only indicates regions on the surface which are rich in active sites but also provides a method to form interesting bimetallic surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltammetric techniques have been introduced to monitor the formation of gold nanoparticles produced via the reaction of the amino acid glycyl-L-tyrosine with Au(III) (bromoaurate) in 0.05 M KOH conditions. The alkaline conditions facilitate amino acid binding to Au(III), inhibit the rate of reduction to Au(0), and provide an excellent supporting electrolyte for voltammetric studies. Data obtained revealed that a range of time-dependent gold solution species are involved in gold nanoparticle formation and that the order in which reagents are mixed is critical to the outcome. Concomitantly with voltammetric measurements, the properties of gold nanoparticles formed are probed by examination of electronic spectra in order to understand how the solution environment present during nanoparticle growth affects the final distribution of the nanoparticles. Images obtained by the ex situ transmission electron microscopy (TEM) technique enable the physical properties of the nanoparticles isolated in the solid state to be assessed. Use of this combination of in situ and ex situ techniques provides a versatile framework for elucidating the details of nanoparticle formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress corrosion cracking (SCC) is a well known form of environmental attack in low carat gold jewellery. It is desirable to have a quick, easy and cost effective way to detect SCC in alloys and prevent them from being used and later failing in their application. A facile chemical method to investigate SCC of 9 carat gold alloys is demonstrated. It involves a simple application of tensile stress to a wire sample in a corrosive environment such as 1–10 % FeCl3 which induces failure in less than 5 minutes. In this study three quaternary (Au, Ag, Cu and Zn) 9 carat gold alloy compositions were investigated for their resistance to SCC and the relationship between time to failure and processing conditions is studied. It is envisaged that the use of such a rapid and facile screening procedure at the production stage may readily identify alloy treatments that produce jewellery that will be susceptible to SCC in its lifetime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lower carat gold alloys, specifically 9 carat gold alloys, containing less than 40 % gold, and alloying additions of silver, copper and zinc, are commonly used in many jewellery applications, to offset high costs and poor mechanical properties associated with pure gold. While gold is considered to be chemically inert, the presence of active alloying additions raises concerns about certain forms of corrosion, particularly selective dissolution of these alloys. The purpose of this study was to systematically study the corrosion behaviour of a series of quaternary gold–silver–copper–zinc alloys using dc potentiodynamic scanning in saline (3.5 % NaCl) environment. Full anodic/cathodic scans were conducted to determine the overall corrosion characteristics of the alloy, followed by selective anodic scans and subsequent morphological and compositional analysis of the alloy surface and corroding media to determine the extent of selective dissolution. Varying degrees of selective dissolution and associated corrosion rates were observed after anodic polarisation in 3.5 % NaCl, depending on the alloy composition. The corrosion behaviour of the alloys was determined by the extent of anodic reactions which induce (1) formation of oxide scales on the alloy surface and or (2) dissolution of Zn and Cu species. In general, the improved corrosion characteristics of alloy #3 was attributed to the composition of Zn/Cu in the alloy and thus favourable microstructure promoting the formation of protective oxide/chloride scales and reducing the extent of Cu and Zn dissolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gold is often considered as an inert material but it has been unequivocally demonstrated that it possesses unique electronic, optical, catalytic and electrocatalytic properties when in a nanostructured form.[1] For the latter the electrochemical behaviour of gold in aqueous media has been widely studied on a plethora of gold samples, including bulk polycrystalline and single-crystal electrodes, nanoparticles, evaporated films as well as electrodeposited nanostructures, particles and thin films.[1b, 2] It is now well-established that the electrochemical behaviour of gold is not as simple as an extended double-layer charging region followed by a monolayer oxide-formation/-removal process. In fact the so-called double-layer region of gold is significantly more complicated and has been investigated with a variety of electrochemical and surface science techniques. Burke and others[3] have demonstrated that significant processes due to the oxidation of low lattice stabilised atoms or clusters of atoms occur in this region at thermally and electrochemically treated electrodes which were confirmed later by Bond[4] to be Faradaic in nature via large-amplitude Fourier transformed ac voltammetric experiments. Supporting evidence for the oxidation of gold in the double-layer region was provided by Bard,[5] who used a surface interrogation mode of scanning electrochemical microscopy to quantify the extent of this process that forms incipient oxides on the surface. These were estimated to be as high as 20% of a monolayer. This correlated with contact electrode resistance measurements,[6] capacitance measurements[7] and also electroreflection techniques...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The galvanic replacement of isolated electrodeposited semiconducting CuTCNQ microstructures on a glassy carbon (GC) substrate with gold is investigated. It is found that anisotropic metal nanoparticles are formed which are not solely confined to the redox active sites on the semiconducting materials but are also observed on the GC substrate which occurs via a lateral charge propagation mechanism. We also demonstrate that this galvanic replacement approach can be used for the formation of isolated AgTCNQ/Au microwire composites which occurs via an analogous mechanism. The resultant MTCNQ/Au (M = Cu, Ag) composite materials are characterized by Raman, spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and investigated for their catalytic properties for the reduction of ferricyanide ions with thiosulphate ions in aqueous solution. Significantly it is demonstrated that gold loading, nanoparticle shape and in particular the MTCNQ–Au interface are important factors that influence the reaction rate. It is shown that there is a synergistic effect at the CuTCNQ/Au composite when compared to AgTCNQ/Au at similar gold loadings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel electrochemical route is used to form highly {111}-oriented and size-controlled Au nanoprisms directly onto the electrodes of quartz crystal microbalances (QCMs) which are subsequently used as mercury vapor sensors. The Au nanoprism loaded QCM sensors exhibited excellent response–concentration linearity with a response enhancement of up to ~ 800% over a non-modified sensor at an operating temperature of 28 °C. The increased surface area and atomic-scale features (step/defect sites) introduced during the growth of nanoprisms are thought to play a significant role in enhancing the sensing properties of the Au nanoprisms toward Hg vapor. The sensors are shown to have excellent Hg sensing capabilities in the concentration range of 0.123–1.27 ppmv (1.02–10.55 mg m − 3), with a detection limit of 2.4 ppbv (0.02 mg m − 3) toward Hg vapor when operating at 28 °C, and 17 ppbv (0.15 mg m − 3) at 89 °C, making them potentially useful for air monitoring applications or for monitoring the efficiency of Hg emission control systems in industries such as mining and waste incineration. The developed sensors exhibited excellent reversible behavior (sensor recovery) within 1 h periods, and crucially were also observed to have high selectivity toward Hg vapor in the presence of ethanol, ammonia and humidity, and excellent long-term stability over a 33 day operating period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the fastest growing industries – aviation – faces serious and compounding challenges in maintaining healthy relationships with community stakeholders. One area in aviation creating community conflict is noise pollution. However, current understandings of the factors that affect noise annoyance of the community are poorly conceptualized. More importantly, the way community needs and expectations could be incorporated in airport governance has been inadequately framed to address the issue of aircraft noise. This paper proposes the util-ity of adopting an integrated strategic asset management (ISAM) framework [1] to explore the dynamic nature of relationships between and airport and its surrounding area. The case of the Gold Coast Airport (OOL) operator and community stakeholders is used. This paper begins with an overview of the ISAM framework in the context of airport governance and sustainable development – as a way to find a balance between economic opportunities and societal concerns through stakeholder engagement. Next, an exploratory case study is adopted as a method to explore the noise-related complaints, complainants, and possible causes. Fol-lowing this, the paper reviews three approaches to community stakeholder engagement in Australia, Japan, and UK and discusses their implications in the con-text of OOL. The paper concludes with a contention that airport governance is likely to be much more effective with the adoption of ISAM framework than without it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light trapping, due to the embedding of metallic nanoparticles, has been shown to be beneficial for a better photoabsorption in organic solar cells. Researchers in plasmonics and in the organic photovoltaics fields are working together to improve the absorption of sunlight and the photon–electron coupling to boost the performance of the devices. Recent advances in the field of plasmonics for organic solar cells focus on the incorporation of gold nanoparticles. This article reviews the different methods to produce and embed gold nanoparticles into organic solar cells. In particular, concentration, size and geometry of gold nanoparticles are key factors that directly influence the light absorption in the devices. It is shown that a careful choice of size, concentration and location of gold nanoparticles in the device result in an enhancement of the power conversion efficiencies when compared to standard organic solar cell devices. Our latest results on gold nanoparticles embedded in on organic solar cell devices are included. We demonstrate that embedded gold nanoparticles, created by depositing and annealing a gold film on transparent electrode, generate a plasmonic effect which can be exploited to increase the power conversion efficiency of a bulk heterojunction solar cell up to 10%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2018 the City of the Gold Coast in south-east Queensland, Australia, will host the next Commonwealth Games. The City is made up a 57 km stretch of coastline and hinterland divided by a major highway. The famous surfing beaches are framed by high-rise development while the hinterland is marketed as a green, unspoilt environment. The winning bid for the Games, and discussion about future infrastructure and marketing of the region’s attributes, has focussed attention on the way City residents and policy makers think about their region in broad terms. Whereas in the past tourism marketing has been directed towards the pleasures of sun and surf by day and bright lights by night, various regional tourist stakeholders are beginning to reorient their programs. This paper considers some of the competing aims of the various stakeholders in this region and the interaction of existing ‘cultures’ with new technology and the demands of permanent residents, using data from a case study of e-literary trails developed in Brisbane, the capital city of Queensland. The importance of tourist imaginaries as a basis for using rich accounts of the past for future planning is emphasized.