940 resultados para GEO-NEUTRINOS
Resumo:
We implement the mechanism of spontaneous CP violation in the 3-3-1 model with right-handed neutrinos and recognize their sources of CP violation. Our main result is that the mechanism works already in the minimal version of the model and new sources of CP violation emerges as an effect of new physics at energies higher than the electroweak scale.
Resumo:
We show that there is a general sort of neutrino effective interactions which allows, under certain conditions, to have relatively large magnetic dipole moments for neutrinos while keeping their masses non-calculable and arbitrarily small. The main ingredient of our mechanism for generating large magnetic moment to the neutrinos is the existence of a neutral scalar which has the only role to give mass to the neutrinos or the existence of flavor changing neutral currents in the neutrino sector. Although our approach is model independent, some models in which those interactions arise are commented.
Resumo:
We investigate the potential of a future kilometer-scale neutrino telescope, such as the proposed IceCube detector in the South Pole, to measure and disentangle the yet unknown components of the cosmic neutrino flux, the prompt atmospheric neutrinos coming from the decay of charmed particles and the extra-galactic neutrinos in the 10 TeV to 1 EeV energy range. Assuming a power law type spectra, dphi(nu)/dE(nu)similar toalphaE(nu)(beta), we quantify the discriminating power of the IceCube detector and discuss how well we can determine magnitude (alpha) as well as slope (beta) of these two components of the high energy neutrino spectrum, taking into account the background coming from the conventional atmospheric neutrinos.
Resumo:
It is well known that experimental data, coming from solar and atmospheric neutrino detectors and also from experiments which look for neutrino oscillations. strongly suggest that neutrinos must have a mass different from zero. However at least the solar and/or the atmospheric neutrino data can be related to new flavor changing interactions beyond the standard model instead to the finite mass of neutrinos. This new physics may induce i) extra effects in neutrino-matter interactions, ii) CP violation in pion and lepton decays and, iii) muonium to antimuonium transition. We give two examples of models in which all those effects arise even with strictly massless neutrinos: the 331 model and multi-Higgs doublet extension of the standard model (mHDM) with flavor changing neutral currents in the charged lepton sector. It means that in this kind of models if neutrino masses were eventually needed, they will be independent of the parameters of the new interactions.
Resumo:
The neutrino oscillation experiment KamLAND has provided us with the first evidence for e disappearance, coming from nuclear reactors. We have combined their data with all solar neutrino data, assuming two flavor neutrino mixing, and obtained allowed parameter regions which are compatible with the so-called large mixing angle MSW solution to the solar neutrino problem. The allowed regions in the plane of mixing angle and mass squared difference are now split into two islands at 99% C.L. We have speculated how these two islands can be distinguished in the near future. We have shown that a 50% reduction of the error on SNO neutral-current measurement can be important in establishing in each of these islands the true values of these parameters lie, We also have simulated KamLAND positron energy spectrum after I year of data taking, assuming the current best fitted values of the oscillation parameters, combined it the with current solar neutrino data and showed how these two split islands can be modified. (C) 2003 Published by Elsevier B.V. B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this Letter we consider that assuming: (a) that the only left-handed neutral fermions are the active neutrinos, (b) that B - L is a gauge symmetry, and (c) that the L assignment is restricted to the integer numbers, the anomaly cancellation imply that at least three right-handed neutrinos must be added to the minimal representation content of the electroweak standard model. However, two types of models arise: (i) the usual one where each of the three identical right-handed neutrinos has total lepton number L = 1: (ii) and the other one in which two of them carry L = 4 while the third one carries L = -5. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We examine a recently proposed connection constraining U(1)(em) electromagnetic gauge invariance and the nature of neutrino mass terms in the framework of G(0) = SU(3)(C) x G(W) x U(1)(N) gauge extensions of the standard model where G(W) denotes the weak isospin special unitary extended groups. We show that in a large class of G(0) models there is a unique fermion representation content and scalar fields which select the neutrino mass terms. Noteworthy. even though there are mathematically equivalent representation contents then can be different aspects concerning the physical consequences which are not a mere truism.
Resumo:
We study the possible impact of the neutrino oscillation which could be induced by a tiny violation of equivalence principle (VEP) on the observation of neutrinos emitted from supernova driven by gravitational collapse. We show that using supernova neutrinos, one can probe very small values of VEP parameters, delta(tau) less than or similar to O(10(-31)) for massless or degenerated neutrinos and delta(tau) less than or similar to O(10(-16)) x (Deltam(2)/10(-5) eV(2)) for massive neutrinos. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
We show that a supersymmetric standard model exhibiting anomaly mediated supersymmetry breaking can generate naturally the observed neutrino mass spectrum as well mixings when we include bilinear R-parity violation interactions. In this model, one of the neutrinos gets its mass due to the tree-level mixing with the neutralinos induced by the R-parity violating interactions while the other two neutrinos acquire their masses due to radiative corrections. One interesting feature of this scenario is that the lightest supersymmetric particle is unstable and its decay can be observed at high energy colliders, providing a falsifiable test of the model.