994 resultados para GENOMES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we proposed a method of classification for viruses' complete genomes based on graph geometrical theory in order to viruses classification. Firstly, a model of triangular geometrical graph was put forward, and then constructed feature-space-samples-graphs for classes of viruses' complete genomes in feature space after feature extraction and normalization. Finally, we studied an algorithm for classification of viruses' complete genomes based on feature-space-samples-graphs. Compared with the BLAST algorithm, experiments prove its efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatty acid desaturases are enzymes that introduce double bonds into the hydrocarbon chains of fatty acids. The fatty acid desaturases from 37 cyanobacterial genomes were identified and classified based upon their conserved histidine-rich motifs and phylogenetic analysis, which help to determine the amounts and distributions of desaturases in cyanobacterial species. The filamentous or N-2-fixing cyanobacteria usually possess more types of fatty acid desaturases than that of unicellular species. The pathway of acyl-lipid desaturation for unicellular marine cyanobacteria Synechococcus and Prochlorococcus differs from that of other cyanobacteria, indicating different phylogenetic histories of the two genera from other cyanobacteria isolated from freshwater, soil, or symbiont. Strain Gloeobacter violaceus PCC 7421 was isolated from calcareous rock and lacks thylakoid membranes. The types and amounts of desaturases of this strain are distinct to those of other cyanobacteria, reflecting the earliest divergence of it from the cyanobacterial line. Three thermophilic unicellular strains, Thermosynechococcus elongatus BP-1 and two Synechococcus Yellowstone species, lack highly unsaturated fatty acids in lipids and contain only one Delta 9 desaturase in contrast with mesophilic strains, which is probably due to their thermic habitats. Thus, the amounts and types of fatty acid desaturases are various among different cyanobacterial species, which may result from the adaption to environments in evolution. Copyright (c) 2008 Xiaoyuan Chi et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyanobacteria are the oldest life form making important contributions to global CO2 fixation on the Earth. Phycobilisomes (PBSs) are the major light harvesting systems of most cyanobacteria species. Recent availability of the whole genome database of cyanobacteria provides us a global and further view on the complex structural PBSs. A PBSs linker family is crucial in structure and function of major light-harvesting PBSs complexes. Linker polypeptides are considered to have the same ancestor with other phycobiliproteins (PBPs), and might have been diverged and evolved under particularly selective forces together. In this paper, a total of 192 putative linkers including 167 putative PBSs-associated linker genes and 25 Ferredoxin-NADP oxidoreductase (FNR) genes were detected through whole genome analysis of all 25 cyanobacterial genomes (20 finished and 5 in draft state). We compared the PBSs linker family of cyanobacteria in terms of gene structure, chromosome location, conservation domain, and polymorphic variants, and discussed the features and functions of the PBSs linker family. Most of PBSs-associated linkers in PBSs linker family are assembled into gene clusters with PBPs. A phylogenetic analysis based on protein data demonstrates a possibility of six classes of the linker family in cyanobacteria. Emergence, divergence, and disappearance of PBSs linkers among cyanobacterial species were due to speciation, gene duplication, gene transfer, or gene loss, and acclimation to various environmental selective pressures especially light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complete mitochondrial genomes have proven extremely valuable in helping to understand the evolutionary relationships among metazoans. However, uneven taxon sampling may lead to unclear or even erroneous phylogenetic topologies. The decapod crustaceans are relatively well-sampled, but sampling is still uneven within this group. We have sequenced the mitochondrial genomes of two shrimps Litopenaeus vannamei and Fenneropenaeus chinensis. As seen in other metazoans, the genomes contain a standard set of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and an AT-rich non-coding region. The gene arrangements are consistent with the pancrustacean ground pattern. Both the pattern of gene rearrangements and phylogenomic analyses using concatenated nucleic acid and amino acid sequences of the 13 mitochondrial protein-coding genes strengthened the support that Caridea and Palinura are primitive members of Pleocyemata. These sequences, in combination with two previously published penaeid mitochondrial genomes, suggest that genera within the family Penaeidae have the following relationship: (((Penaeits + Fenneropenaett.) + Litopeiiaelts) + Marsupenaeus). The analyses of nucleic acid and amino acid sequences of the mitochondrial genomes also strongly support the monophyly of Penaeidae, Brachyura and Pleocyemata. In addition, the analyses of the average Ka/Ks in the 13 mitochondrial protein-coding genes of penaeid shrimps indicated a strong purifying selection within this group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Galloanserae is an ancient and diverse avian group, for which comprehensive molecular evidence relevant to phylogenetic analysis in the context of molecular chronology is lacking. In this study, we present two additional mitochondrial genome sequences of Galloanserae (the whistling duck, Dendrocygna javanica, and the black swan, Cygnus atratus) to broaden the scope of molecular phylogenetic reconstruction. The lengths of the whistling duck's and black swan's mitochondrial genomes are 16,753 and 16,748 bases, respectively. Phylogenetic analyses suggest that Dendrocygna is more likely to be in a basal position of the branch consisting of Anatinae and Anserinae, an affiliation that does not conform to its traditional classification. Bayesian approaches were employed to provide a rough timescale for Galloanserae evolution. In general, a narrow range of 95% confidence intervals gave younger estimates than those based on limited genes and estimated that at least two lineages originated before the Coniacian epoch around 90 MYA, well before the Cretaceous-Tertiary boundary. In addition, these results, which were compatible with estimates from fossil evidence, also imply that the origin of numerous genera in Anseriformes took place in the late Oligocene to early Miocene. Taken together, the results presented here provide a working framework for future research on Galloanserae evolution, and they underline the utility of whole mitochondrial genome sequences for the resolution of deep divergence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duplications and rearrangements of coding genes are major themes in the evolution of mitochondrial genomes, bearing important consequences in the function of mitochondria and the fitness of organisms. Yu et al. (BMC Genomics 2008, 9: 477) reported the complete mt genome sequence of the oyster Crassostrea hongkongensis (16,475 bp) and found that a DNA segment containing four tRNA genes (trnK(1), trnC, trnQ(1) and trnN), a duplicated (rrnS) and a split rRNA gene (rrnL5') was absent compared with that of two other Crassostrea species. It was suggested that the absence was a novel case of "tandem duplication-random loss" with evolutionary significance. We independently sequenced the complete mt genome of three C. hongkongensis individuals, all of which were 18,622 bp and contained the segment that was missing in Yu et al.'s sequence. Further, we designed primers, verified sequences and demonstrated that the sequence loss in Yu et al.'s study was an artifact caused by placing primers in a duplicated region. The duplication and split of ribosomal RNA genes are unique for Crassostrea oysters and not lost in C. hongkongensis. Our study highlights the need for caution when amplifying and sequencing through duplicated regions of the genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robert Hasterok, Agnieszka Marasek, Iain S. Donnison, Ian Armstead, Ann Thomas, Ian P. King, Elzbieta Wolny, Dominika Idziak, John Draper and Glyn Jenkins (2006). Alignment of the genomes of brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization.Genetics, 73 (1), 349-362. Sponsorship: Royal Society / BBSRC;BBSRC RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND:Recent advances in genome sequencing suggest a remarkable conservation in gene content of mammalian organisms. The similarity in gene repertoire present in different organisms has increased interest in studying regulatory mechanisms of gene expression aimed at elucidating the differences in phenotypes. In particular, a proximal promoter region contains a large number of regulatory elements that control the expression of its downstream gene. Although many studies have focused on identification of these elements, a broader picture on the complexity of transcriptional regulation of different biological processes has not been addressed in mammals. The regulatory complexity may strongly correlate with gene function, as different evolutionary forces must act on the regulatory systems under different biological conditions. We investigate this hypothesis by comparing the conservation of promoters upstream of genes classified in different functional categories.RESULTS:By conducting a rank correlation analysis between functional annotation and upstream sequence alignment scores obtained by human-mouse and human-dog comparison, we found a significantly greater conservation of the upstream sequence of genes involved in development, cell communication, neural functions and signaling processes than those involved in more basic processes shared with unicellular organisms such as metabolism and ribosomal function. This observation persists after controlling for G+C content. Considering conservation as a functional signature, we hypothesize a higher density of cis-regulatory elements upstream of genes participating in complex and adaptive processes.CONCLUSION:We identified a class of functions that are associated with either high or low promoter conservation in mammals. We detected a significant tendency that points to complex and adaptive processes were associated with higher promoter conservation, despite the fact that they have emerged relatively recently during evolution. We described and contrasted several hypotheses that provide a deeper insight into how transcriptional complexity might have been emerged during evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten "case" genomes from individuals with severe hemophilia A and ten "control" genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs) discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used ultra-deep sequencing to obtain tens of thousands of HIV-1 sequences from regions targeted by CD8+ T lymphocytes from longitudinal samples from three acutely infected subjects, and modeled viral evolution during the critical first weeks of infection. Previous studies suggested that a single virus established productive infection, but these conclusions were tempered because of limited sampling; now, we have greatly increased our confidence in this observation through modeling the observed earliest sample diversity based on vastly more extensive sampling. Conventional sequencing of HIV-1 from acute/early infection has shown different patterns of escape at different epitopes; we investigated the earliest escapes in exquisite detail. Over 3-6 weeks, ultradeep sequencing revealed that the virus explored an extraordinary array of potential escape routes in the process of evading the earliest CD8 T-lymphocyte responses--using 454 sequencing, we identified over 50 variant forms of each targeted epitope during early immune escape, while only 2-7 variants were detected in the same samples via conventional sequencing. In contrast to the diversity seen within epitopes, non-epitope regions, including the Envelope V3 region, which was sequenced as a control in each subject, displayed very low levels of variation. In early infection, in the regions sequenced, the consensus forms did not have a fitness advantage large enough to trigger reversion to consensus amino acids in the absence of immune pressure. In one subject, a genetic bottleneck was observed, with extensive diversity at the second time point narrowing to two dominant escape forms by the third time point, all within two months of infection. Traces of immune escape were observed in the earliest samples, suggesting that immune pressure is present and effective earlier than previously reported; quantifying the loss rate of the founder virus suggests a direct role for CD8 T-lymphocyte responses in viral containment after peak viremia. Dramatic shifts in the frequencies of epitope variants during the first weeks of infection revealed a complex interplay between viral fitness and immune escape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The International Crocodilian Genomes Working Group (ICGWG) will sequence and assemble the American alligator (Alligator mississippiensis), saltwater crocodile (Crocodylus porosus) and Indian gharial (Gavialis gangeticus) genomes. The status of these projects and our planned analyses are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri]. RESULTS: Phylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology. CONCLUSIONS: Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves.