981 resultados para GAMMA-AMINOBUTYRIC-ACID


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synaptic localization of γ-aminobutyric acid type A (GABAA) receptors is a prerequisite for synaptic inhibitory function, but the mechanism by which different receptor subtypes are localized to postsynaptic sites is poorly understood. The γ2 subunit and the postsynaptic clustering protein gephyrin are required for synaptic localization and function of major GABAA receptor subtypes. We now show that transgenic overexpression of the γ3 subunit in γ2 subunit-deficient mice restores benzodiazepine binding sites, benzodiazepine-modulated whole cell currents, and postsynaptic miniature currents, suggesting the formation of functional, postsynaptic receptors. Moreover, the γ3 subunit can substitute for γ2 in the formation of GABAA receptors that are synaptically clustered and colocalized with gephyrin in vivo. These clusters were formed even in brain regions devoid of endogenous γ3 subunit, indicating that the factors present for clustering of γ2 subunit-containing receptors are sufficient to cluster γ3 subunit-containing receptors. The GABAA receptor and gephyrin-clustering properties of the ectopic γ3 subunit were also observed for the endogenous γ3 subunit, but only in the absence of the γ2 subunit, suggesting that the γ3 subunit is at a competitive disadvantage with the γ2 subunit for clustering of postsynaptic GABAA receptors in wild-type mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benzodiazepines allosterically modulate γ-aminobutyric acid (GABA) evoked chloride currents of γ-aminobutyric acid type A (GABAA) receptors. Coexpression of either rat γ2 or γ3, in combination with α1 and β2 subunits, results both in receptors displaying high [3H]Ro 15-1788 affinity. However, receptors containing a γ3 subunit display a 178-fold reduced affinity to zolpidem as compared with γ2-containing receptors. Eight chimeras between γ2 and γ3 were constructed followed by nine different point mutations in γ2, each to the homologous amino acid residue found in γ3. Chimeric or mutant γ subunits were coexpressed with α1 and β2 in human embryonic kidney 293 cells to localize amino acid residues responsible for the reduced zolpidem affinity. Substitution of a methionine-to-leucine at position 130 of γ2 (γ2M130L) resulted in a 51-fold reduction in zolpidem affinity whereas the affinity to [3H]Ro 15-1788 remained unchanged. The affinity for diazepam was only decreased by about 2-fold. The same mutation resulted in a 9-fold increase in Cl 218872 affinity. A second mutation (γ2M57I) was found to reduce zolpidem affinity by about 4-fold. Wild-type and γ2M130L-containing receptors were functionally expressed in Xenopus oocytes. Upon mutation allosteric coupling between agonist and modulatory sites is preserved. Dose–response curves for zolpidem and for diazepam showed that the zolpidem but not the diazepam apparent affinity is drastically reduced. The apparent GABA affinity is not significantly affected by the γ2M130L mutation. The identified amino acid residues may define part of the benzodiazepine binding pocket of GABAA receptors. As the modulatory site in the GABAA receptor is homologous to the GABA site, and to all agonist sites of related receptors, γ2M130 may either point to a homologous region important for agonist binding in all receptors or define a new region not underlying this principle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied GABAergic synaptic transmission in retinal ganglion cells and hippocampal pyramidal cells to determine, at a cellular level, what is the effect of the targeted disruption of the gene encoding the synthetic enzyme GAD65 on the synaptic release of γ-aminobutyric acid (GABA). Neither the size nor the frequency of GABA-mediated spontaneous inhibitory postsynaptic currents (IPSCs) were reduced in retina or hippocampus in GAD65−/− mice. However, the release of GABA during sustained synaptic activation was substantially reduced. In the retina both electrical- and K+-induced increases in IPSC frequency were depressed without a change in IPSC amplitude. In the hippocampus the transient increase in the probability of inhibitory transmitter release associated with posttetanic potentiation was absent in the GAD65−/− mice. These results indicate that during and immediately after sustained stimulation the increase in the probability of transmitter release is not maintained in GAD65−/− mice. Such a finding suggests a decrease in the size or refilling kinetics of the releasable pool of vesicles, and various mechanisms are discussed that could account for such a defect.