990 resultados para GALACTIC NUCLEI
Resumo:
Context. Accretion onto supermassive black holes is believed to occur mostly in obscured active galactic nuclei (AGN). Such objects are proving rather elusive in surveys of distant galaxies, including those at X-ray energies. Aims. Our main goal is to determine whether the revised IRAC criteria of Donley et al. (2012, ApJ, 748, 142; objects with an infrared (IR) power-law spectral shape), are effective at selecting X-ray type-2 AGN (i.e., absorbed N_H > 10^22 cm^-2). Methods. We present the results from the X-ray spectral analysis of 147 AGN selected by cross-correlating the highest spectral quality ultra-deep XMM-Newton and the Spitzer/IRAC catalogues in the Chandra Deep Field South. Consequently it is biased towards sources with high S/N X-ray spectra. In order to measure the amount of intrinsic absorption in these sources, we adopt a simple X-ray spectral model that includes a power-law modified by intrinsic absorption at the redshift of each source and a possible soft X-ray component. Results. We find 21/147 sources to be heavily absorbed but the uncertainties in their obscuring column densities do not allow us to confirm their Compton-Thick nature without resorting to additional criteria. Although IR power-law galaxies are less numerous in our sample than IR non-power-law galaxies (60 versus 87 respectively), we find that the fraction of absorbed (N_H^intr > 10^22 cm^-2) AGN is significantly higher (at about 3 sigma level) for IR-power-law sources (similar to 2/3) than for those sources that do not meet this IR selection criteria (~1/2). This behaviour is particularly notable at low luminosities, but it appears to be present, although with a marginal significance, at all luminosities. Conclusions. We therefore conclude that the IR power-law method is efficient in finding X-ray-absorbed sources. We would then expect that the long-sought dominant population of absorbed AGN is abundant among IR power-law spectral shape sources not detected in X-rays.
Resumo:
We combine high-resolution Hubble Space Telescope/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (M_*> 10^10 M_☉) galaxies at redshifts z = 1.4-3 in two fields of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates (SFRs) qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5-3. At z≲2, cSFGs present SFR = 100-200 M_☉ yr^–1, yet their specific star formation rates (sSFR ~ 10^–9 yr^–1) are typically half that of other massive SFGs at the same epoch, and host X-ray luminous active galactic nuclei (AGNs) 30 times (~30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10^8 yr). The cSFGs are continuously being formed at z = 2-3 and fade to cQGs down to z ~ 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary tracks of QG formation: an early (z≲2), formation path of rapidly quenched cSFGs fading into cQGs that later enlarge within the quiescent phase, and a late-arrival (z≳2) path in which larger SFGs form extended QGs without passing through a compact state.
Resumo:
We have used the Two-Degree Field (2dF) instrument on the Anglo-Australian Telescope (AAT) to obtain redshifts of a sample of z < 3 and 18.0 < g < 21.85 quasars selected from Sloan Digital Sky Survey (SDSS) imaging. These data are part of a larger joint programme between the SDSS and 2dF communities to obtain spectra of faint quasars and luminous red galaxies, namely the 2dF-SDSS LRG and QSO (2SLAQ) Survey. We describe the quasar selection algorithm and present the resulting number counts and luminosity function of 5645 quasars in 105.7 deg(2). The bright-end number counts and luminosity functions agree well with determinations from the 2dF QSO Redshift Survey (2QZ) data to g similar to 20.2. However, at the faint end, the 2SLAQ number counts and luminosity functions are steeper (i.e. require more faint quasars) than the final 2QZ results from Croom et al., but are consistent with the preliminary 2QZ results from Boyle et al. Using the functional form adopted for the 2QZ analysis ( a double power law with pure luminosity evolution characterized by a second-order polynomial in redshift), we find a faint-end slope of beta =-1.78 +/- 0.03 if we allow all of the parameters to vary, and beta =-1.45 +/- 0.03 if we allow only the faint-end slope and normalization to vary (holding all other parameters equal to the final 2QZ values). Over the magnitude range covered by the 2SLAQ survey, our maximum-likelihood fit to the data yields 32 per cent more quasars than the final 2QZ parametrization, but is not inconsistent with other g > 21 deep surveys for quasars. The 2SLAQ data exhibit no well-defined 'break' in the number counts or luminosity function, but do clearly flatten with increasing magnitude. Finally, we find that the shape of the quasar luminosity function derived from 2SLAQ is in good agreement with that derived from Type I quasars found in hard X-ray surveys.
Resumo:
We present the analysis of the spectroscopic and photometric catalogues of 11 X-ray luminous clusters at 0.07 < z < 0.16 from the Las Campanas/Anglo-Australian Telescope Rich Cluster Survey. Our spectroscopic data set consists of over 1600 galaxy cluster members, of which two-thirds are outside r(200). These spectra allow us to assign cluster membership using a detailed mass model and expand on our previous work on the cluster colour-magnitude relation ( CMR) where membership was inferred statistically. We confirm that the modal colours of galaxies on the CMR become progressively bluer with increasing radius d( B - R)/dr(p) = - 0.011 +/- 0.003 and with decreasing local galaxy density d( B - R)/dlog ( Sigma)= - 0.062 +/- 0.009. Interpreted as an age effect, we hypothesize that these trends in galaxy colour should be reflected in mean H delta equivalent width. We confirm that passive galaxies in the cluster increase in Hd line strength as dH delta/dr(p) = 0.35 +/- 0.06. Therefore, those galaxies in the cluster outskirts may have younger luminosity-weighted stellar populations; up to 3 Gyr younger than those in the cluster centre assuming d( B - R)/dt = 0.03 mag per Gyr. A variation of star formation rate, as measured by [ O II]lambda 3727 angstrom, with increasing local density of the environment is discernible and is shown to be in broad agreement with previous studies from the 2dF Galaxy Redshift Survey and the Sloan Digital Sky Survey. We divide our spectra into a variety of types based upon the MORPHs classification scheme. We find that clusters at z similar to 0.1 are less active than their higher-redshift analogues: about 60 per cent of the cluster galaxy population is non-star forming, with a further 20 per cent in the post-starburst class and 20 per cent in the currently active class, demonstrating that evolution is visible within the past 2 - 3 Gyr. We also investigate unusual populations of blue and very red non-star forming galaxies and we suggest that the former are likely to be the progenitors of galaxies which will lie on the CMR, while the colours of the latter possibly reflect dust reddening. We show that the cluster galaxies at large radii consist of both backsplash ones and those that are infalling to the cluster for the first time. We make a comparison to the field population at z similar to 0.1 and examine the broad differences between the two populations. Individually, the clusters show significant variation in their galaxy populations which we suggest reflects their recent infall histories.
Resumo:
Using far-infrared imaging from the "Herschel Lensing Survey," we derive dust properties of spectroscopically confirmed cluster member galaxies within two massive systems at z ~ 0.3: the merging Bullet Cluster and the more relaxed MS2137.3-2353. Most star-forming cluster sources (~90%) have characteristic dust temperatures similar to local field galaxies of comparable infrared (IR) luminosity (T_dust ~ 30 K). Several sub-luminous infrared galaxy (LIRG; L_IR < 10^11 L_☉) Bullet Cluster members are much warmer (T_dust > 37 K) with far-infrared spectral energy distribution (SED) shapes resembling LIRG-type local templates. X-ray and mid-infrared data suggest that obscured active galactic nuclei do not contribute significantly to the infrared flux of these "warm dust" galaxies. Sources of comparable IR luminosity and dust temperature are not observed in the relaxed cluster MS2137, although the significance is too low to speculate on an origin involving recent cluster merging. "Warm dust" galaxies are, however, statistically rarer in field samples (>3σ), indicating that the responsible mechanism may relate to the dense environment. The spatial distribution of these sources is similar to the whole far-infrared bright population, i.e., preferentially located in the cluster periphery, although the galaxy hosts tend toward lower stellar masses (M_* < 10^10 M_☉). We propose dust stripping and heating processes which could be responsible for the unusually warm characteristic dust temperatures. A normal star-forming galaxy would need 30%-50% of its dust removed (preferentially stripped from the outer reaches, where dust is typically cooler) to recover an SED similar to a "warm dust" galaxy. These progenitors would not require a higher IR luminosity or dust mass than the currently observed normal star-forming population.
Resumo:
Luminous Infrared (IR) Galaxies (LIRGs, L_IR=10^11-10 L_⨀) are an important cosmological class of galaxies as they are the main contributors to the co-moving star formation rate density of the universe at z=1. In this paper we present a guaranteed time observation (GTO) Spitzer InfraRed Spectrograph (IRS) program aimed to obtain spectral mapping of a sample of 14 local d<76Mpc LIRGs. The data cubes map, at least, the central 20arcsec X 20arcsec to 30 arcsec X 30 arcsec regions of the galaxies, and use all four IRS modules covering the full 5-38 μ m spectral range. The final goal of this project is to characterize fully the mid-IR properties of local LIRGs as a first step to understanding their more distant counterparts. In this paper we present the first results of this GTO program. The IRS spectral mapping data allow us to build spectral maps of the bright mid-IR emission lines (e.g., [Ne II] 12.81 μ m, [Ne III]15.56 μ m, [S III] 18.71 μ m, H_2 at 17 μ m), continuum, the 6.2 and 11.3 μ m polycyclic aromatic hydrocarbon (PAH) features, and the 9.7 μ m silicate feature, as well as to extract 1D spectra for regions of interest in each galaxy. The IRS data are used to obtain spatially resolved measurements of the extinction using the 9.7 μ m silicate feature, and to trace star forming regions using the neon lines and the PAH features. We also investigate a number of active galactic nuclei (AGN) indicators, including the presence of high excitation emission lines and a strong dust continuum emission at around 6 9.7 μ m . We finally use the integrated Spitzer/IRS spectra as templates of local LIRGs. We discuss several possible uses for these templates, including the calibration of the star formation rate of IR-bright galaxies at high redshift. We also predict the intensities of the brightest mid-IR emission lines for LIRGs as a function of redshift, and compare them with the expected sensitivities of future space IR missions.
Resumo:
Ultraviolet (UV) nonionizing continuum and mid-infrared (IR) emission constitute the basis of two widely used star formation (SF) indicators at intermediate and high redshifts. We study 2430 galaxies with z < 1.4 in the Extended Groth Strip with deep MIPS 24 μm observations from FIDEL, spectroscopy from DEEP2, and UV, optical, and near-IR photometry from the AEGIS. The data are coupled with dust-reddened stellar population models and Bayesian spectral energy distribution (SED) fitting to estimate dust-corrected star formation rates (SFRs). In order to probe the dust heating from stellar populations of various ages, the derived SFRs were averaged over various timescales—from 100 Myr for "current" SFR (corresponding to young stars) to 1-3 Gyr for long-timescale SFRs (corresponding to the light-weighted age of the dominant stellar populations). These SED-based UV/optical SFRs are compared to total IR luminosities extrapolated from 24 μm observations, corresponding to 10-18 μm rest frame. The total IR luminosities are in the range of normal star-forming galaxies and luminous IR galaxies (10^10-10^12 L_☉). We show that the IR luminosity can be estimated from the UV and optical photometry to within a factor of 2, implying that most z < 1.4 galaxies are not optically thick. We find that for the blue, actively star-forming galaxies the correlation between the IR luminosity and the UV/optical SFR shows a decrease in scatter when going from shorter to longer SFR-averaging timescales. We interpret this as the greater role of intermediate age stellar populations in heating the dust than what is typically assumed. Equivalently, we observe that the IR luminosity is better correlated with dust-corrected optical luminosity than with dust-corrected UV light. We find that this holds over the entire redshift range. Many so-called green valley galaxies are simply dust-obscured actively star-forming galaxies. However, there exist 24 μm detected galaxies, some with L_IR>10^11 L_☉, yet with little current SF. For them a reasonable amount of dust absorption of stellar light (but presumably higher than in nearby early-type galaxies) is sufficient to produce the observed levels of IR, which includes a large contribution from intermediate and old stellar populations. In our sample, which contains very few ultraluminous IR galaxies, optical and X-ray active galactic nuclei do not contribute on average more than ~50% to the mid-IR luminosity, and we see no evidence for a large population of "IR excess" galaxies.
Resumo:
Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to 1043 erg s-1. Here, we introduce a simple treatment of clumping, and find that a filling factor of ˜0.01 moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Lyα and C IV 1550 Å at low inclinations. At high inclinations, the spectra possess prominent LoBAL features. Despite these successes, we cannot reproduce all emission lines seen in quasar spectra with the correct equivalent-width ratios, and we find an angular dependence of emission line equivalent width despite the similarities in the observed emission line properties of BAL and non-BAL quasars. Overall, our work suggests that biconical winds can reproduce much of the qualitative behaviour expected from a unified model, but we cannot yet provide quantitative matches with quasar properties at all viewing angles. Whether disc winds can successfully unify quasars is therefore still an open question.
Resumo:
Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.
Resumo:
Blazar research offers a view to one of the most energetic physical processes known to man. The high-energy end of blazar emission has been probed by the Fermi satellite mission since 2008, and it has catalogued more than a thousand gamma- ray bright blazars. However, a large fraction of these sources have no spectroscopic classification at lower energies. In this thesis, optical spectra for sixteen Fermi blazar candidates are published. The optical spectroscopic data have been observed with the Nordic Optical Telescope on the island of La Palma, Spain, during the summer of 2015. The ALFOSC instrument was used, with exposure times from 800 to 3000 seconds per target, yielding signal- to-noise ratios from 10 to 38. All of the sixteen targets show a flat, featureless optical spectrum, characteristic to BL Lacertae objects. The spectra of two targets contain faint emission features, and faint absorption features are seen in three targets. However, none of the features could be reliably identified. Therefore all of the targets are classified as BL Lacertae objects. This classification is supported by the statistical distribution of Fermi -selected active galactic nuclei; more than half of the identified Fermi AGN are BL Lacs. However, the classification of this sample could be improved further with a new observing campaign. This is especially true for the objects with uncertain spectral features.
Resumo:
Magnetic fields are ubiquitous in galaxy cluster atmospheres and have a variety of astrophysical and cosmological consequences. Magnetic fields can contribute to the pressure support of clusters, affect thermal conduction, and modify the evolution of bubbles driven by active galactic nuclei. However, we currently do not fully understand the origin and evolution of these fields throughout cosmic time. Furthermore, we do not have a general understanding of the relationship between magnetic field strength and topology and other cluster properties, such as mass and X-ray luminosity. We can now begin to answer some of these questions using large-scale cosmological magnetohydrodynamic (MHD) simulations of the formation of galaxy clusters including the seeding and growth of magnetic fields. Using large-scale cosmological simulations with the FLASH code combined with a simplified model of the acceleration of cosmic rays responsible for the generation of radio halos, we find that the galaxy cluster frequency distribution and expected number counts of radio halos from upcoming low-frequency sur- veys are strongly dependent on the strength of magnetic fields. Thus, a more complete understanding of the origin and evolution of magnetic fields is necessary to understand and constrain models of diffuse synchrotron emission from clusters. One favored model for generating magnetic fields is through the amplification of weak seed fields in active galactic nuclei (AGN) accretion disks and their subsequent injection into cluster atmospheres via AGN-driven jets and bubbles. However, current large-scale cosmological simulations cannot directly include the physical processes associated with the accretion and feedback processes of AGN or the seeding and merging of the associated SMBHs. Thus, we must include these effects as subgrid models. In order to carefully study the growth of magnetic fields in clusters via AGN-driven outflows, we present a systematic study of SMBH and AGN subgrid models. Using dark-matter only cosmological simulations, we find that many important quantities, such as the relationship between SMBH mass and galactic bulge velocity dispersion and the merger rate of black holes, are highly sensitive to the subgrid model assumptions of SMBHs. In addition, using MHD calculations of an isolated cluster, we find that magnetic field strengths, extent, topology, and relationship to other gas quantities such as temperature and density are also highly dependent on the chosen model of accretion and feedback. We use these systematic studies of SMBHs and AGN inform and constrain our choice of subgrid models, and we use those results to outline a fully cosmological MHD simulation to study the injection and growth of magnetic fields in clusters of galaxies. This simulation will be the first to study the birth and evolution of magnetic fields using a fully closed accretion-feedback cycle, with as few assumptions as possible and a clearer understanding of the effects of the various parameter choices.
Resumo:
Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, 6 x 10(19) eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38(-6)(+7))%, compared with 21% expected for isotropic cosmic rays. This is down from the early estimate of (69-(+11)(13))%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The dynamics and geometry of the material inflowing and outflowing close to the supermassive black hole in active galactic nuclei are still uncertain. X-rays are the most suitable way to study the AGN innermost regions because of the Fe Kα emission line, a proxy of accretion, and Fe absorption lines produced by outflows. Winds are typically classified as Warm Absorbers (slow and mildly ionized) and Ultra Fast Outflows (fast and highly ionized). Transient Obscurers -optically thick winds that produce strong spectral hardening in X-rays, lasting from days to months- have been observed recently. Emission and absorption features vary on time-scales from hours to years, probing phenomena at different distances from the SMBH. In this work, we use time-resolved spectral analysis to investigate the accretion and ejection flows, to characterize them individually and search for correlations. We analyzed XMM-Newtomn data of a set of the brightest Seyfert 1 galaxies that went through an obscuration event: NGC 3783, NGC 3227, NGC 5548, and NGC 985. Our aim is to search for emission/absorption lines in short-duration spectra (∼ 10ks), to explore regions as close as the SMBH as the statistics allows for, and possibly catch transient phenomena. First we run a blind search to detect emission/absorption features, then we analyze their evolution with Residual Maps: we visualize simultaneously positive and negative residuals from the continuum in the time-energy plane, looking for patterns and relative time-scales. In NGC 3783 we were able to ascribe variations of the Fe Kα emission line to absorptions at the same energy due to clumps in the obscurer, whose presence is detected at >3σ, and to determine the size of the clumps. In NGC 3227 we detected a wind at ∼ 0.2c at ∼ 2σ, briefly appearing during an obscuration event.
Resumo:
Understanding how Active Galactic Nuclei (AGN) shape galaxy evolution is a key challenge of modern astronomy. In the framework where black hole (BH) and galaxy growth are linked, AGN feedback must be tackled both at its “causes” (e.g. AGN-driven winds) and its “effects” (alteration of the gas reservoir in AGN hosts). The most informative cosmic time is z~1-3, at the peak of AGN activity and galaxy buildup, the so-called cosmic noon. The aim of this thesis is to provide new insights regarding some key questions that still remain open in this research field: i) What are the properties of AGN-driven sub-pc scale winds at z>1? ii) Are AGN-driven winds effective in influencing the life of galaxies? iii) Do AGN impact directly on star formation (SF) and gas content of their hosts? I first address AGN feedback as “caught in the act” by studying ultra-fast outflows (UFOs), X-ray AGN-driven winds, in gravitationally lensed quasars. I build the first statistically robust sample of high-z AGN, not preselected based on AGN-driven winds. I derive a first estimate of the high-z UFO detection fraction and measure the UFO duty cycle of a single high-z quasar for the first time. I also address the “effects” of AGN feedback on the life of host galaxies. If AGN influence galaxy growth, then they will reasonably impact the molecular gas reservoir first, and SF as a consequence. Through a comparative study of the molecular gas content in cosmic-noon AGN hosts and matched non-active galaxies (i.e., galaxies not hosting an AGN), we find that the host galaxies of more regular AGN (not selected to be the most luminous) are generally similar to non-active galaxies. However, we report on the possibility of a luminosity effect regulating the efficiency by which AGN might impact on galaxy growth.
Resumo:
In this thesis project, I present stationary models of rotating fluids with toroidal distributions that can be used to represent the active galactic nuclei (AGN) central obscurers, i.e. molecular tori (Combes et al., 2019), as well as geometrically thick accretion discs, like ADAF discs (Narayan and Yi, 1995) or Polish doughnuts (Abramowicz, 2005). In particular, I study stationary rotating systems with a more general baroclinic distribution (with a vertical gradient of the angular velocity), which are often more realistic and less studied, due to their complexity, than the barotropic ones (with cylindrical rotation), which are easier to construct. In the thesis, I compute analytically the main intrinsic and projected properties of the power-law tori based on the potential-density pairs of Ciotti and Bertin (2005). I study the density distribution and the resulting gravitational potential for different values of α, in the range 2 < α < 5. For the same models, I compute the surface density of the systems when seen face-on and edge-on. I then apply the stationary Euler equations to obtain rotational velocity and temperature distributions of the self-gravitating models in the absence of an external gravitational potential. In the thesis I also consider the power-law tori with the presence of a central black hole in addition to the gas self-gravity, and solving analytically the stationary Euler equations, I compute how the properties of the system are modified by the black hole and how they vary as a function of the black hole mass. Finally, applying the Solberg-Høiland criterion, I show that these baroclinic stationary models are linearly stable in the absence of the black hole. In the presence of the black hole I derive the analytical condition for stability, which depends on α and on the black hole mass. I also study the stability of the tori in the hypothesis that they are weakly magnetized, finding that they are always unstable to this instability.