955 resultados para G GENE
Resumo:
Hybrids among transgenic plants and related species are expected to occur if they are sympatric and when there are not crossing barriers; as is the case, in Brazil, of cry1Ac transgenic cotton and Gossypium barbadense. This species has been maintained as dooryard plants, and should be preserved as a genetic resource. Hybrids were evaluated about traits related to fitness, leading to infer about its chances of survivor and selection. A barbadense genotype collected at the state of Mato Grosso was outcrossed to the variety DP 404, containing the gene cry1Ac, and to the isoline DP 404. All the F1 individuals and 122 among 170 F2 individuals expressed the toxin, and presented levels of resistance to pink bollworm (Pectinophora gossypiella) and cotton leafworm (Alabama argillacea) equivalent to the transgenic parent and superior to the isoline, barbadense or non transgenic hybrids. The percentage of germination and number of days to germinate did not differ among genotypes. Anthesis of the first flower and opening of the first cotton boll occurred earlier for herbaceous cotton and F1 hybrids than F2 population in average; all the populations presented a number of days to flower and opening of the first boll smaller then barbadense. The highest plants were barbadenses, and herbaceus the smallest, with F1 and F2 populations presenting intermediary heights. The number of seeds per plants were superior for F1 hybrids an herbaceous cotton, F2 populations were in average intermediary; the barbadense genotype produced the smallest number of seeds per plant. Pink bollworm, mainly, and also cotton leafworm, are important barbadense pests, so the transgene positive effect could favor the selection of hybrids, and hence G. hirsutum genome, against the maintenance of pure G. barbadense genome. The selection may be influenced by the plant uses: the smaller size of hybrids when compared to the barbadense may lead them to be differentiated from these parents to which medicinal properties are attributed; on the other hand, the greater boll production may favor hybrids maintenance with the purpose of producing lamp wicks, or use as an ornamental or swab
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a flipflop phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites.
Resumo:
Desde a sua descoberta, em 1989, o vírus da hepatite C (HCV) tem sido reconhecido como a maior causa de doença hepática crônica no mundo. Considerado um problema de saúde pública mundial que envolve entre 170 a 350 milhões de pessoas infectadas. Fatores genéticos do hospedeiro têm sido implicados na persistência da infecção pelo HCV. Estudos sugerem que dois polimorfismos de nucleotídeos únicos na posição -607 C/A (rs1946518) e -137 G/C (rs187238) na região promotora do gene da IL-18 têm sido encontrados e associados com a atividade de transcrição do promotor da IL-18 e, potencialmente, de IFN-γ, sendo associados ao atraso na depuração viral e na persistência da doença. Foi realizado um estudo do tipo transversal analítico no município de Belém-PA, em 152 amostras sanguíneas de pacientes infectados pelo HCV e 188 controles não infectados. As amostras foram submetidas à RT-PCR, para detecção do RNA viral e, posteriormente, à RFLP-PCR para avaliação do polimorfismo na região promotora do gene da IL-18, nas posições -137 G/C e -607 C/A. Os resultados não revelaram diferença significante para os polimorfismos da IL-18 entre os pacientes e grupo controle. Mas revelou diferença significante para os genótipos homozigotos G/G (39,1%), na posição -137 (OR = 3.00, IC [95%] = 1.24 – 7.22, p = 0.02), e A/A (21,7%), posição -607 (OR = 3.62, IC [95%] = 1.25 – 10.45, p = 0.03), entre as mulheres, em relação aos homens (22,6% e 7,6%). Os resultados demonstraram indícios que entre as mulheres, a presença do polimorfismo homozigoto A/A (-607) atue como fator protetor contra a infecção pelo HCV, já que o genótipo A/A (-607) tem sido relacionado em alguns estudos à doença hepática leve e à depuração viral.
Resumo:
Noonan syndrome (NS) and Noonan-related disorders [cardio-facio-cutaneous (CFC), Costello, Noonan syndrome with multiple lentigines (NS-ML), and neurofibromatosis-Noonan syndromes (NFNS)] are a group of developmental disorders caused by mutations in genes of the RAS/MAPK pathway. Mutations in the KRAS gene account for only a small proportion of affected Noonan and CFC syndrome patients that present an intermediate phenotype between these two syndromes, with more frequent and severe intellectual disability in NS and less ectodermal involvement in CFC syndrome, as well as atypical clinical findings such as craniosynostosis. Recently, the first familial case with a novel KRAS mutation was described. We report on a second vertical transmission (a mother and two siblings) with a novel mutation (p.M72L), in which the proband has trigonocephaly and the affected mother and sister, prominent ectodermal involvement. Metopic suture involvement has not been described before, expanding the main different cranial sutures which can be affected in NS and KRAS gene mutations. The gene alteration found in the studied family is in close proximity to the one reported in the other familial case (close to the switch II region of the G-domain), suggesting that this specific region of the gene could have less severe effects on intellectual ability than the other KRAS gene mutations found in NS patients and be less likely to hamper reproductive fitness. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Bernard-Soulier syndrome (BSS) is an extremely rare hereditary bleeding disorder, caused by mutations occurring in the Glycoprotein (GP) Ibalpha, GPIbbeta and GP9 genes that encode for the corresponding subunits of platelet GPIb-V-IX adhesion receptor complex. BSS has been reported in many populations, mostly behaving in an autosomal-recessive manner.While the great majority of BSS mutations are unique to a single individual or family, the GP9 1828A>G Asn45Ser mutation, which we have identified in an undocumented Australian Caucasian, has already been reported in multiple unrelated Caucasian families from various Northern and Central European countries. Haplotype analysis of 19 BSS patients from 15 unrelated Northern European families (including 2 compound heterozygote siblings from a British family previously published, and 17 1828A>G Asn45Ser homozygotes), showed that 14 of these BSS patients from 11 of the 1828A>G Asn45Ser homozygote families share a common haplotype at the chromosomal region 3' to the GP9 gene. Hence, the results suggest that the GP9 1828A>GAsn45Ser mutation in these families is ancient, and its frequent emergence in the European population is the result of a founder effect rather than recurrent mutational events. Association of the 1828A>G Asn45Ser mutation with variant haplotypes in 4 other Northern European BSS families raised the possibility of a second founder event, or rare recombinations in these families. Additional members from these 'atypical' lineages would need to be screened to resolve this question.
Resumo:
In a cell line (NB4) derived from a patient with acute promyelocytic leukemia, all-trans-retinoic acid (ATRA) and interferon (IFN) induce the expression of a novel gene we call RIG-G (for retinoic acid-induced gene G). This gene codes for a 58-kDa protein containing 490 amino acids with several potential sites for post-translational modification. In untreated NB4 cells, the expression of RIG-G is undetectable. ATRA treatment induces the transcriptional expression of RIG-G relatively late (12–24 hr) in a protein synthesis-dependent manner, whereas IFN-α induces its expression early (30 min to 3 hr). Database search has revealed a high-level homology between RIG-G and several IFN-stimulated genes in human (ISG54K, ISG56K, and IFN-inducible and retinoic acid-inducible 58K gene) and some other species, defining a well conserved gene family. The gene is composed of two exons and has been mapped by fluorescence in situ hybridization to chromosome 10q24, where two other human IFN-stimulated gene members are localized. A synergistic induction of RIG-G expression in NB4 cells by combined treatment with ATRA and IFNs suggests that a collaboration exists between their respective signaling pathways.
Resumo:
Targeted disruption of Gα and Gβ genes has established the requirement of an intact G protein signaling pathway for optimal execution of several important physiological processes, including pathogenesis, in the chestnut blight fungus Cryphonectria parasitica. We now report the identification of a G protein signal transduction component, beta disruption mimic factor-1, BDM-1. Disruption of the corresponding gene, bdm-1, resulted in a phenotype indistinguishable from that previously observed after disruption of the Gβ subunit gene, cpgb-1. The BDM-1 deduced amino acid sequence contained several significant clusters of identity with mammalian phosducin, including a domain corresponding to a highly conserved 11-amino acid stretch that has been implicated in binding to the Gβγ dimer and two regions of defined Gβ/phosducin contact points. Unlike the negative regulatory function proposed for mammalian phosducin, the genetic data presented in this report suggest that BDM-1 is required for or facilitates Gβ function. Moreover, disruption of either bdm-1 or cpgb-1 resulted in a significant, posttranscriptional reduction in the accumulation of CPG-1, a key Gα subunit required for a range of vital physiological processes.
Resumo:
Persistent infection of the chestnut blight fungus Cryphonectria parasitica with the prototypic hypovirus CHVI-713 results in attenuation of fungal virulence (hypo-virulence) and reduced accumulation of the GTP-binding (G) protein a subunit CPG-1. Transgenic cosuppression of CPG-1 accumulation in the absence of virus infection also confers hypovirulence. We now report the use of mRNA differential display to examine the extent to which virus infection alters fungal gene transcript accumulation and to assess the degree to which modification of CPG-1 signal transduction contributes to this alteration. More than 400 PCR products were identified that either increased (296 products) or decreased (127 products) in abundance as a result of virus infection. Significantly, 65% of these products exhibited similar changes as a result of CPG-1 cosuppression in the absence of virus infection. We also report that both virus infection and CPG-1 cosuppression elevate cAMP levels 3- to 5-fold. Additionally, it was possible to mimic the effect of virus infection and CPG-1 cosuppression on transcript accumulation for representative fungal genes by drug-induced elevation of cAMP levels. These results strengthen and extend previous indications that hypovirus infection causes a significant and persistent alteration of fungal gene expression/transcript accumulation. They further show that this alteration is primarily mediated through modification of the CPG-1 signaling pathway and suggest that, similar to mammalian Gi alpha subunits, CPG-1 functions as a negative modulator of adenylyl cyclase. Finally, these results suggest a role for G-protein-regulated cAMP accumulation in hypovirus-mediated alteration of fungal gene expression.
Resumo:
beta 2-Microglobulin is an essential subunit of major histocompatibility complex (Mhc) class I molecules, which present antigenic peptides to T lymphocytes. We sequenced a number of cDNAs and two genomic clones corresponding to chicken beta 2-microglobulin. The chicken beta 2-microglobulin gene has a similar genomic organization but smaller introns and higher G+C content than mammalian beta 2-microglobulin genes. The promoter region is particularly G+C-rich and contains, in addition to interferon regulatory elements, potential S/W, X, and Y boxes that were originally described for mammalian class II but not class I alpha or beta 2-microglobulin genes. There is a single chicken beta 2-microglobulin gene that has little polymorphism in the coding region. Restriction fragment length polymorphisms from Mhc homozygous lines, Mhc congenic lines, and backcross families, as well as in situ hybridization, show that the beta 2-microglobulin gene is located on a microchromosome different from the one that contains the chicken Mhc. We propose that the structural similarities between the beta 2-microglobulin and Mhc genes in the chicken are due to their presence on microchromosomes and suggest that these features and the microchromosomes appeared by deletion of DNA in the lineage leading to the birds.
Resumo:
Background - The PCK1 gene, encoding cytosolic phosphoenolpyruvate carboxykinase (PEPCKC), has previously been implicated as a candidate gene for type 2 diabetes (T2D) susceptibility. Rodent models demonstrate that over-expression of Pck1 can result in T2D development and a single nucleotide polymorphism (SNP) in the promoter region of human PCK1 (-232C/G) has exhibited significant association with the disease in several cohorts. Within the UK-resident South Asian population, T2D is 4 to 6 times more common than in indigenous white Caucasians. Despite this, few studies have reported on the genetic susceptibility to T2D in this ethnic group and none of these has investigated the possible effect of PCK1 variants. We therefore aimed to investigate the association between common variants of the PCK1 gene and T2D in a UK-resident South Asian population of Punjabi ancestry, originating predominantly from the Mirpur area of Azad Kashmir, Pakistan. Methods - We used TaqMan assays to genotype five tagSNPs covering the PCK1 gene, including the -232C/G variant, in 903 subjects with T2D and 471 normoglycaemic controls. Results - Of the variants studied, only the minor allele (G) of the -232C/G SNP demonstrated a significant association with T2D, displaying an OR of 1.21 (95% CI: 1.03 - 1.42, p = 0.019). Conclusion - This study is the first to investigate the association between variants of the PCK1 gene and T2D in South Asians. Our results suggest that the -232C/G promoter polymorphism confers susceptibility to T2D in this ethnic group.
Resumo:
Modelling class B G-protein-coupled receptors (GPCRs) using class A GPCR structural templates is difficult due to lack of homology. The plant GPCR, GCR1, has homology to both class A and class B GPCRs. We have used this to generate a class A-class B alignment, and by incorporating maximum lagged correlation of entropy and hydrophobicity into a consensus score, we have been able to align receptor transmembrane regions. We have applied this analysis to generate active and inactive homology models of the class B calcitonin gene-related peptide (CGRP) receptor, and have supported it with site-directed mutagenesis data using 122 CGRP receptor residues and 144 published mutagenesis results on other class B GPCRs. The variation of sequence variability with structure, the analysis of polarity violations, the alignment of group-conserved residues and the mutagenesis results at 27 key positions were particularly informative in distinguishing between the proposed and plausible alternative alignments. Furthermore, we have been able to associate the key molecular features of the class B GPCR signalling machinery with their class A counterparts for the first time. These include the [K/R]KLH motif in intracellular loop 1, [I/L]xxxL and KxxK at the intracellular end of TM5 and TM6, the NPXXY/VAVLY motif on TM7 and small group-conserved residues in TM1, TM2, TM3 and TM7. The equivalent of the class A DRY motif is proposed to involve Arg(2.39), His(2.43) and Glu(3.46), which makes a polar lock with T(6.37). These alignments and models provide useful tools for understanding class B GPCR function.
Resumo:
The calcitonin gene-related peptide (CGRP) family of G protein- coupled receptors (GPCRs) is formed through the association of the calcitonin receptor-like receptor (CLR) and one of three receptor activity-modifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM), and intermedin/adrenomedullin 2 (AM2), is well known to result in aGαs-mediated increase in cAMP. Here we used modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gαs and Gαq but also identify a Gαi component to CLR signaling in both yeast and HEK-293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand- and RAMPdependent signaling bias among the Gαs, Gαi, and Gαq/11 pathways. The results are discussed in the context of RAMP interactions probed through molecular modeling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology.