556 resultados para Fusiform gyrus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The left superior temporal gyrus (STG) has been suggested to play a key role in auditory verbal hallucinations (AVH) in patients with schizophrenia. Methods: Eleven medicated subjects with schizophrenia and medication-resistant AVH and 19 healthy controls underwent perfusion magnetic resonance (MR) imaging with arterial spin labeling (ASL). Three additional repeated measurements were conducted in the patients. Patients underwent a treatment with transcranial magnetic stimulation (TMS) between the first 2 measurements. The main outcome measure was the pooled cerebral blood flow (CBF), which consisted of the regional CBF measurement in the left STG and the global CBF measurement in the whole brain. Results: Regional CBF in the left STG in patients was significantly higher compared to controls (p < 0.0001) and to the global CBF in patients (p < 0.004) at baseline. Regional CBF in the left STG remained significantly increased compared to the global CBF in patients across time (p < 0.0007), and it remained increased in patients after TMS compared to the baseline CBF in controls (p < 0.0001). After TMS, PANSS (p = 0.003) and PSYRATS (p = 0.01) scores decreased significantly in patients. Conclusions: This study demonstrated tonically increased regional CBF in the left STG in patients with schizophrenia and auditory hallucinations despite a decrease in symptoms after TMS. These findings were consistent with what has previously been termed a trait marker of AVH in schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inappropriate response tendencies may be stopped via a specific fronto/basal ganglia/primary motor cortical network. We sought to characterize the functional role of two regions in this putative stopping network, the right inferior frontal gyrus (IFG) and the primary motor cortex (M1), using electocorticography from subdural electrodes in four patients while they performed a stop-signal task. On each trial, a motor response was initiated, and on a minority of trials a stop signal instructed the patient to try to stop the response. For each patient, there was a greater right IFG response in the beta frequency band ( approximately 16 Hz) for successful versus unsuccessful stop trials. This finding adds to evidence for a functional network for stopping because changes in beta frequency activity have also been observed in the basal ganglia in association with behavioral stopping. In addition, the right IFG response occurred 100-250 ms after the stop signal, a time range consistent with a putative inhibitory control process rather than with stop-signal processing or feedback regarding success. A downstream target of inhibitory control is M1. In each patient, there was alpha/beta band desynchronization in M1 for stop trials. However, the degree of desynchronization in M1 was less for successfully than unsuccessfully stopped trials. This reduced desynchronization on successful stop trials could relate to increased GABA inhibition in M1. Together with other findings, the results suggest that behavioral stopping is implemented via synchronized activity in the beta frequency band in a right IFG/basal ganglia network, with downstream effects on M1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial meningitis causes neurological sequelae in up to 50% of survivors. Two pathogens known for their propensity to cause severe neurological damage are Streptococcus pneumoniae and group B streptococci. Some forms of neuronal sequelae, such as learning and memory deficits, have been associated with neuronal injury in the hippocampus. To learn more about hippocampal injury in meningitis, we performed a comparative study in bacterial meningitis due to S. pneumoniae and group B streptococcus, in which 11-day-old infant rats were infected intracisternally with either of the two pathogens. Histopathological examination of the neuronal injury in the dentate gyrus of the hippocampus showed that S. pneumoniae caused predominantly classical apoptotic cell death. Cells undergoing apoptosis were located only in the subgranular zone and stained positive for activated caspase-3 and TUNEL. Furthermore, dividing progenitor cells seemed particularly sensitive to this form of cell death. Group B streptococcus was mainly responsible for a caspase-3-independent (and TUNEL-negative) form of cell death. Compared with the morphological features found in apoptosis (e.g., apoptotic bodies), this form of neuronal death was characterized by clusters of uniformly shrunken cells. It affected the dentate gyrus throughout the blade, showing no preferences for immature or mature neurons. Thus, depending on the infecting agent, bacterial meningitis causes two distinct forms of cell injury in the dentate gyrus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term potentiation (LTP) of excitatory transmission is an important candidate cellular mechanism for the storage of memories in the mammalian brain. The subcellular phenomena that underlie the persistent increase in synaptic strength, however, are incompletely understood. A potentially powerful method to detect a presynaptic increase in glutamate release is to examine the effect of LTP induction on the rate at which the use-dependent blocker MK-801 attenuates successive N-methyl-d-aspartic acid (NMDA) receptor-mediated synaptic signals. This method, however, has given apparently contradictory results when applied in hippocampal CA1. The inconsistency could be explained if NMDA receptors were opened by glutamate not only released from local presynaptic terminals, but also diffusing from synapses on neighboring cells where LTP was not induced. Here we examine the effect of pairing-induced LTP on the MK-801 blocking rate in two afferent inputs to dentate granule cells. LTP in the medial perforant path is associated with a significant increase in the MK-801 blocking rate, implying a presynaptic increase in glutamate release probability. An enhanced MK-801 blocking rate is not seen, however, in the lateral perforant path. This result still could be compatible with a presynaptic contribution to LTP in the lateral perforant path if intersynaptic cross-talk occurred. In support of this hypothesis, we show that NMDA receptors consistently sense more quanta of glutamate than do α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. In the medial perforant path, in contrast, there is no significant difference in the number of quanta mediated by the two receptors. These results support a presynaptic contribution to LTP and imply that differences in intersynaptic cross-talk can complicate the interpretation of experiments designed to detect changes in transmitter release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To address genetic influences on hippocampal neurogenesis in adult mice, we compared C57BL/6, BALB/c, CD1(ICR), and 129Sv/J mice to examine proliferation, survival, and differentiation of newborn cells in the dentate gyrus. Proliferation was highest in C57BL/6; the survival rate of newborn cells was highest in CD1. In all strains ≈60% of surviving newborn cells had a neuronal phenotype, but 129/SvJ produced more astrocytes. Over 6 days C57BL/6 produced 0.36% of their total granule cell number of 239,000 as new neurons, BALB/c 0.30% of 242,000, CD1 (ICR) 0.32% of 351,000, and 129/SvJ 0.16% of 280,000. These results show that different aspects of adult hippocampal neurogenesis are differentially influenced by the genetic background.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calretinin (Cr) is a Ca2+ binding protein present in various populations of neurons distributed in the central and peripheral nervous systems. We have generated Cr-deficient (Cr−/−) mice by gene targeting and have investigated the associated phenotype. Cr−/− mice were viable, and a large number of morphological, biochemical, and behavioral parameters were found unaffected. In the normal mouse hippocampus, Cr is expressed in a widely distributed subset of GABAergic interneurons and in hilar mossy cells of the dentate gyrus. Because both types of cells are part of local pathways innervating dentate granule cells and/or pyramidal neurons, we have explored in Cr−/− mice the synaptic transmission between the perforant pathway and granule cells and at the Schaffer commissural input to CA1 pyramidal neurons. Cr−/− mice showed no alteration in basal synaptic transmission, but long-term potentiation (LTP) was impaired in the dentate gyrus. Normal LTP could be restored in the presence of the GABAA receptor antagonist bicuculline, suggesting that in Cr−/− dentate gyrus an excess of γ-aminobutyric acid (GABA) release interferes with LTP induction. Synaptic transmission and LTP were normal in CA1 area, which contains only few Cr-positive GABAergic interneurons. Cr−/− mice performed normally in spatial memory task. These results suggest that expression of Cr contributes to the control of synaptic plasticity in mouse dentate gyrus by indirectly regulating the activity of GABAergic interneurons, and that Cr−/− mice represent a useful tool to understand the role of dentate LTP in learning and memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal apoptosis was observed in the rat dentate gyrus in two experimental models of human limbic epilepsy. Five hours after one hippocampal kindling stimulation, a marked increase of in situ terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL) of fragmented DNA was observed in nuclei located within and on the hilar border of the granule cell layer and in the polymorphic region. Forty kindling stimulations with 5-min interval produced higher numbers of labeled nuclei compared with one stimulation. The increase of TUNEL-positive nuclei was prevented by the protein synthesis inhibitor cycloheximide but not affected by the N-methyl-d-aspartate receptor antagonist MK-801. Kainic acid-induced seizures lead to a pattern of labeling in the hippocampal formation identical to that evoked by kindling. A large proportion of cells displaying TUNEL-positive nuclei was double-labeled by the neuron-specific antigen NeuN, demonstrating the neuronal identity of apoptotic cells. Either 1 or 40 kindling stimulations also gave rise to a marked increase of the number of cells double-labeled with the mitotic marker bromodeoxyuridine and NeuN in the subgranular zone and on the hilar border of the dentate granule cell layer. The present data show that single and intermittent, brief seizures induce both apoptotic death and proliferation of dentate gyrus neurons. We hypothesize that these processes, occurring early during epileptogenesis, are primary events in the development of hippocampal pathology in animals and possibly also in patients suffering from temporal lobe epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serotonin systems have been implicated in the regulation of hippocampal function. Serotonin 5-HT2C receptors are widely expressed throughout the hippocampal formation, and these receptors have been proposed to modulate synaptic plasticity in the visual cortex. To assess the contribution of 5-HT2C receptors to the serotonergic regulation of hippocampal function, mice with a targeted 5-HT2C-receptor gene mutation were examined. An examination of long-term potentiation at each of four principal regions of the hippocampal formation revealed a selective impairment restricted to medial perforant path–dentate gyrus synapses of mutant mice. This deficit was accompanied by abnormal performance in behavioral assays associated with dentate gyrus function. 5-HT2C receptor mutants exhibited abnormal performance in the Morris water maze assay of spatial learning and reduced aversion to a novel environment. These deficits were selective and were not associated with a generalized learning deficit or with an impairment in the discrimination of spatial context. These results indicate that a genetic perturbation of serotonin receptor function can modulate dentate gyrus plasticity and that plasticity in this structure may contribute to neural mechanisms underlying hippocampus-dependent behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single interneurons influence thousands of postsynaptic principal cells, and the control of interneuronal excitability is an important regulator of the computational properties of the hippocampus. However, the mechanisms underlying long-term alterations in the input–output functions of interneurons are not fully understood. We report a mechanism of interneuronal plasticity that leads to the functional enhancement of the gain of glutamatergic inputs in the absence of long-term potentiation of the excitatory synaptic currents. Interneurons in the dentate gyrus exhibit a characteristic, limited (≈8 mV) depolarization of their resting membrane potential after high-frequency stimulation of the perforant path. The depolarization can be observed with either whole-cell or perforated patch electrodes, and it lasts in excess of 3 h. The long-term depolarization is specific to interneurons, because granule cells do not show it. The depolarization requires the activation of Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and the rise of intracellular Ca2+, but not N-methyl-d-aspartate (NMDA) receptor activation. Data on the maintenance of the depolarization point to a major role for a long-term change in the rate of electrogenic Na+/K+-ATPase pump function in interneurons. As a result of the depolarization, interneurons after the tetanus respond with action potential discharges to previously subthreshold excitatory postsynaptic potentials (EPSPs), even though the EPSPs are not potentiated. These results demonstrate that the plastic nature of the interneuronal resting membrane potential underlies a unique form of long-term regulation of the gain of excitatory inputs to γ-aminobutyric acid (GABA)ergic neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term potentiation (LTP) is a form of synaptic memory that may subserve developmental and behavioral plasticity. An intensively investigated form of LTP is dependent upon N-methyl-D-aspartate (NMDA) receptors and can be elicited in the dentate gyrus and hippocampal CA1. Induction of this type of LTP is triggered by influx of Ca2+ through activated NMDA receptors, but the downstream mechanisms of induction, and even more so of LTP maintenance, remain controversial. It has been reported that the function of NMDA receptor channel can be regulated by protein tyrosine kinases and protein phosphatases and that inhibition of protein tyrosine kinases impairs induction of LTP. Herein we report that LTP in the dentate gyrus is specifically correlated with tyrosine phosphorylation of the NMDA receptor subunit 2B in an NMDA receptor-dependent manner. The effect is observed with a delay of several minutes after LTP induction and persists in vivo for several hours. The potential relevance of this post-translational modification to mechanisms of LTP and circuit plasticity is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considerable evidence exists to support the hypothesis that the hippocampus and related medial temporal lobe structures are crucial for the encoding and storage of information in long-term memory. Few human imaging studies, however, have successfully shown signal intensity changes in these areas during encoding or retrieval. Using functional magnetic resonance imaging (fMRI), we studied normal human subjects while they performed a novel picture encoding task. High-speed echo-planar imaging techniques evaluated fMRI signal changes throughout the brain. During the encoding of novel pictures, statistically significant increases in fMRI signal were observed bilaterally in the posterior hippocampal formation and parahippocampal gyrus and in the lingual and fusiform gyri. To our knowledge, this experiment is the first fMRI study to show robust signal changes in the human hippocampal region. It also provides evidence that the encoding of novel, complex pictures depends upon an interaction between ventral cortical regions, specialized for object vision, and the hippocampal formation and parahippocampal gyrus, specialized for long-term memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genomic mapping has been used to identify a region of the host genome that determines resistance to fusiform rust disease in loblolly pine where no discrete, simply inherited resistance factors had been previously found by conventional genetic analysis over four decades. A resistance locus, behaving as a single dominant gene, was mapped by association with genetic markers, even though the disease phenotype deviated from the expected Mendelian ratio. The complexity of forest pathosystems and the limitations of genetic analysis, based solely on phenotype, had led to an assumption that effective long-term disease resistance in trees should be polygenic. However, our data show that effective long-term resistance can be obtained from a single qualitative resistance gene, despite the presence of virulence in the pathogen population. Therefore, disease resistance in this endemic coevolved forest pathosystem is not exclusively polygenic. Genomic mapping now provides a powerful tool for characterizing the genetic basis of host pathogen interactions in forest trees and other undomesticated, organisms, where conventional genetic analysis often is limited or not feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age-associated memory impairment occurs frequently in primates. Based on the established importance of both the perforant path and N-methyl-D-aspartate (NMDA) receptors in memory formation, we investigated the glutamate receptor distribution and immunofluorescence intensity within the dentate gyrus of juvenile, adult, and aged macaque monkeys with the combined use of subunit-specific antibodies and quantitative confocal laser scanning microscopy. Here we demonstrate that aged monkeys, compared to adult monkeys, exhibit a 30.6% decrease in the ratio of NMDA receptor subunit 1 (NMDAR1) immunofluorescence intensity within the distal dendrites of the dentate gyrus granule cells, which receive the perforant path input from the entorhinal cortex, relative to the proximal dendrites, which receive an intrinsic excitatory input from the dentate hilus. The intradendritic alteration in NMDAR1 immunofluorescence occurs without a similar alteration of non-NMDA receptor subunits. Further analyses using synaptophysin as a reflection of total synaptic density and microtubule-associated protein 2 as a dendritic structural marker demonstrated no significant difference in staining intensity or area across the molecular layer in aged animals compared to the younger animals. These findings suggest that, in aged monkeys, a circuit-specific alteration in the intradendritic concentration of NMDAR1 occurs without concomitant gross structural changes in dendritic morphology or a significant change in the total synaptic density across the molecular layer. This alteration in the NMDA receptor-mediated input to the hippocampus from the entorhinal cortex may represent a molecular/cellular substrate for age-associated memory impairments.