968 resultados para Fuel cells.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polypyrrole (Ppy) was successfully introduced into methyl substituted sulfonated poly(ether ether ketone) (SPEEK) membranes by polymerization in SPEEK solutions to improve their methanol resistance. Uniform polypyrrole (Ppy) distributed composite membranes were formed by this method by the interaction between SPEEK and Ppy. The properties of the composite membranes were characterized in detail. The composite membranes show very good proton conductive capability (25 degrees C: 0.05-0.06s cm(-1)) and good methanol resistance (25 degrees C: 5.3 x 10(-7) 1.1 x 10(-6) cm(2) s(-1)). The methanol diffusion coefficients of composite membranes are much lower than that of pure SPEEK membranes (1.5 x 10(-6) cm(2) s(-1)). The composite membranes show very good potential usage in direct methanol fuel cells (DMFCs).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of solid electrolytes, (Ce(0.8)Ln(0.2))(1 - x)MxO2 - delta(Ln = La, Nd, Sm, Gd, M:Alkali-earth), were prepared by amorphous citrate gel method. XRD patterns indicate that a pure fluorite phase is formed at 800 degreesC. The electrical conductivity and the AC impedance spectra were measured. XPS spectra show that the oxygen vacancies increase owing to the MO doping, which results in the increase of the oxygen ionic transport number and conductivity. The performance of ceria-based solid electrolyte is improved. The effects of rare-earth and alkali-earth ions on the electricity were discussed. The open-circuit voltages and maximum power density of planar solid oxide fuel cell using (Ce0.8Sm0.2)(1 - 0.05)Ca0.05O2 - delta as electrolyte are 0.86 V and 33 mW . cm(-2), respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The micro-pore configurations on the matrix surface were studied by SEM. The matrix of molten carbonate fuel cell (MCFC) performance was also improved by the better coordination between the reasonable radius of the micro-pores and the higher porosity of the cell matrix. The many and complicated micro-pore configurations in the cell matrix promoted the volatilization of the organic additives and the burn of polyvinyl butyral (PVB). The smooth volatilization of the organic additives and the complete burn of PVB were the significant factors for the improved MCFC performance. Oxygen diffusion controlled-burn mechanism of PVB in the cell matrix was proposed. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuel of proton exchange membrane fuel cells (PEMFC) mostly comes from reformate containing CO. which will poison the fuel cell electrocatalyst. The effect of CO on the performance of PEMFC is studied in this paper. Several electrode structures are investigated for CO containing fuel. The experimental results show that thin-film catalyst electrode has higher specific catalyst activity and traditional electrode structure can stand for CO poisoning to some extent. A composite electrode structure is proposed for improving CO tolerance of PEMFCs. With the same catalyst loading. the new composite electrode has improved cell performance than traditional electrode with PtRu/C electrocatalyst for both pure hydrogen and CO/H-2. The EDX test of composite anode is also performed in this paper, the effective catalyst distribution is found in the composite anode. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Platinum utilization in the gas-diffusion catalyst layer and thin-film catalyst layer is investigated. The morphology of PTFE and Nafion in a simulated catalyst layer is examined by scanning electronmicroscopy (SEM) and transmission electron microscopy (TEM). The results show that the platinum utilization of the thin-film catalyst layer containing only Pt/C and Nafion is 45.4%. The low utilization is attributed to the fact that the electron conduction of many catalyst particles is impaired by some thick Nafion layers or clumps. For the gas-diffusion (E-TEK) electrode, the platinum utilization is mainly affected by the proton conduction provided by Nafion. The blocking effect of PTFE on the active sites is not serious. When the electrode is sufficiently impregnated with Nafion by an immersion method, the platinum utilization can reach 77.8%. Transmission electron micrographs reveal that although some thick Nafion layers and clumps are observed in the Pt/C + Nafion layer, the distribution of Nafion in the catalyst layer is basically uniform. The melted PTFE disperses in the catalyst layer very uniformly. No large PTFE clumps or wide net-like structure is observed. The reactant gas may have to diffuse evenly in the catalyst layer. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of PtRu nanocomposites supported on H2O2-oxidized multi-walled carbon nanotubes (MWCNTs) were synthesized via two chemical reduction methods - one used aqueous formaldehyde (HCHO method) and the other used ethylene glycol (EG method) as the reducing agents. The effects of the solvents (water and ethylene glycol) and the surface composition of the MWCNTs on the deposition and the dispersion of the metal particles were investigated using N-2 adsorption. TEM. ICP-AES. FTIR and TPD. The wetting heats of the MWCNTs in corresponding solvents were also measured. The characterizations suggest that combination of the surface chemistry of the MWCNTs with the solvents decides the deposition and the dispersion of the metal nanoparticles. These nanocomposites were evaluated as proton exchange membrane fuel cell anode catalyts for oxidation of 50 ppm CO contaminated hydrogen and compared with a commercial PtRu/C catalyst. The data reveal superior performances for the nanocomposites prepared by the EG method to those by the HCHO method and even to that for tile Commercial analogue. Structure performance relationship of the nanocomposites was also studied. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, high-surface supported PtRu/C were prepared with Ru(NO)(NO3)(3) and [Pt(H2NCH2CH2NH2)(2)]Cl-2 as the precursors and hydrogen as a reducing agent. XRD and TEM analyses showed that the PtRu/C catalysts with different loadings possessed small and homogeneous metal particles. Even at high metal loading (40 wt.% Pt, 20 wt.% Ru) the mean metal particle size is less than 4 nm. Meanwhile, the calculated Pt crystalline lattice parameter and Pt (220) peak position indicated that the geometric structure of Pt was modified by Ru atoms. Among the prepared catalysts, the lattice parameter of 40-20 wt.% PtRu/C contract most. Cyclic voltammetry (CV), chronoamperometry (CA), CO stripping and single direct methanol fuel cell tests jointly suggested that the 40-20 wt.% PtRu/C catalyst has the highest electrochemical activity for methanol oxidation. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present review, we summarize the recent progress in electrocatalysts for direct alcohol fuel cells, focussing on the research of electrocatalysts for both alcohol oxidation and oxygen reduction, which are crucial in the development of fuel cells. A modified EG (ethylene polyol) method to prepare well-dispersed nano-sized Pt-based electrocatalysts with high loadings is reported. By this method, a more active carbon supported PtRu catalyst for methanol oxidation reaction and a PtSn catalyst for ethanol oxidation reaction have been synthesized successfully. Furthermore, a methanol tolerant Pd-based catalyst for cathode oxygen reduction reaction has been developed. HRTEM and HR-EDS have been employed to characterize the microstructure and micro-components of the above electrocatalysts. Results show that the bimetallic electrocatalysts prepared by the modified EG method display uniform size and homogeneous components at nanometer scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel polytetrafluoroethylene (PTFE)-reinforced multilayer self-humidifying composite membrane is developed. The membrane is composed of Nafion-impregnated porous PTFE composite as the central layer and nanosized SiO2 supported Pt catalyst imbedded into Nafion as the two side layers. The proton exchange membrane (PEM) fuel cells employing the self-humidifying membrane (20 mu m thick) under dry H-2/O-2 gave a peak power density of 0.95 W/cm(2) and an open-circuit voltage of 1.032 V. The good membrane performance is attributed to hygroscopic Pt-SiO2 catalyst at the two side layers, which results in enhanced anode side self-humidification function and decreased cathode polarization. (c) 2005 The Electrochemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La0.8Sr0.2Mn1.1O3 (LSM1.1)-10 mol% Sc2O3-Stabilized ZrO2 co-doped with CeO2 (ScSZ) composite cathodes were investigated for anode-supported solid oxide fuel cells (SOFCs) with thin 8 mol% Y2O3-stabilized ZrO2 (YSZ) electrolyte. X-ray diffraction (XRD) results indicated that the ScSZ electrolytes displayed good chemical compatibility with the nonstoichiometric LSM1.1 against co-firing at 1300 degrees C. Increasing the CeO2 content in the ScSZ electrolytes dramatically suppressed the electrode polarization resistance, which may be related to the improved surface oxygen exchange or the enlarged active area of cathode. The 5Ce10ScZr was the best electrolyte for the composite cathodes, which caused a small ohmic resistance decrease and the reduced polarization resistance and brought about the highest cell performance. The cell performances at lower temperatures seemed to rely on the electrode polarization resistance more seriously, than the ohmic resistance. Compared with the cell impedance at higher temperatures, the higher the 5Ce10ScZr proportion in the composite cathodes, the smaller the increment of the charge transfer resistance at lower temperatures. The anode-supported SOFC with the LSM1.1-5Ce10ScZr (60:40) composite cathode achieved the maximum power densities of 0.82 W/cm(2) at 650 degrees C and 2.24 W/cm(2) at 800 degrees C, respectively. (c) 2005 Elsevier B.V. All rights reserved.