983 resultados para Frequency-Modulated Atomic Force
Resumo:
This paper presents a simple, cost-effective and robust atomic force microscope (AFM), which has been purposely designed and built for use as a teaching aid in undergraduate controls labs. The guiding design principle is to have all components be open and visible to the students, so the inner functioning of the microscope has been made clear to see. All of the parts but one are off the shelf, and assembly time is generally less than two days, which makes the microscope a robust instrument that is readily handled by the students with little chance of damage. While the scanning resolution is nowhere near that of a commercial instrument, it is more than sufficient to take interesting scans of micrometer-scale objects. A survey of students after their having used the AFM resulted in a generally good response, with 80% agreeing that they had a positive learning experience. © 2009 IEEE.
Resumo:
There are many methods for decomposing signals into a sum of amplitude and frequency modulated sinusoids. In this paper we take a new estimation based approach. Identifying the problem as ill-posed, we show how to regularize the solution by imposing soft constraints on the amplitude and phase variables of the sinusoids. Estimation proceeds using a version of Kalman smoothing. We evaluate the method on synthetic and natural, clean and noisy signals, showing that it outperforms previous decompositions, but at a higher computational cost. © 2012 IEEE.
Resumo:
A constant amount of Ge was deposited on strained GexSi1-x layers of approximately the same thickness but with different alloy compositions, ranging from x = 0.06 to x = 0.19. From their atomic-force-microscopy images, we found that both the size and density of Ge islands increased with the Ge composition of the strained layer. By conservation of mass, this implies that these islands must incorporate material from the underlying strained layer. (C) 2000 American Institute of Physics. [S0003-6951(00)03529-4].