962 resultados para Frequency Modulated Atomic Force Microscope
Resumo:
Many species of bat use ultrasonic frequency modulated (FM) pulses to measure the distance to objects by timing the emission and reception of each pulse. Echolocation is mainly used in flight. Since the flight speed of bats often exceeds 1% of the speed of sound,Doppler effects will lead to compression of the time between emission and reception as well as an elevation of the echo frequencies, resulting in a distortion of the perceived range. This paper describes the consequences of these Doppler effects on the ranging performance of bats using different pulse designs. The consequences of Doppler effects on ranging performance described in this paper assume bats to have a very accurate ranging resolution, which is feasible with a filterbank receiver. By modeling two receiver types, it was first established that the effects of Doppler compression are virtually independent of the receiver type. Then, used a cross-correlation model was used to investigate the effect of flight speed on Doppler tolerance and range–Doppler coupling separately. This paper further shows how pulse duration, bandwidth, function type, and harmonics influence Doppler tolerance and range–Doppler coupling. The influence of each signal parameter is illustrated using calls of several bat species. It is argued that range–Doppler coupling is a significant source of error in bat echolocation, and various strategies bats could employ to deal with this problem, including the use of range rate information are discussed.
Resumo:
The early stages of plasticity in KBr single crystals have been studied by means of nano-meter-scale indentation in complementary experiments using both a nanoindenter and an atomic force microscope. Nanoindentafion experiments precisely correlate indentation depth and forces, while force microscopy provides high-resolution force measurements and images of the surface revealing dislocation activity. The two methods provide very similar results for the onset of plasticity in KBr. Upon loading we observe yield of the surface in atomic layer units which we attribute to the nucleation of single dislocations. Unloading is accompanied by plastic recovery as evident from a non-linear force distance unloading curve and delayed discrete plasticity events.
Resumo:
The time evolution of the film thickness and domain formation of octadecylamine molecules adsorbed oil a mica surface is investigated Using atomic force microscopy. The adsorbed Film thickness is determined by measuring the height profile across the mica-amine interface of a mica surface partially immersed in a 15 mM solution of octadecylamine in chloroform. Using this novel procedure, adsorption of amine on mica is found to occur in three distinct stages, with morphologically distinct domain Formation and growth occurring during each stage. In the first stage, where adsorption is primarily in the thin-film regime, all average Film thickness of 0.2 (+/- 0.3) nm is formed for exposure times below 30 s and 0.8 (+/- 0.2) nm for 60 s of immersion time. During this stage, large sample spanning domains are observed. The second stage, which occurs between 60-300 s, is associated with it regime of rapid film growth, and the film thickness increases from about 0.8 to 25 nm during this stage. Once the thick-film regime is established, further exposure to the amine solution results in all increase in the domain area, and it regime of lateral domain growth is observed. In this stage, the domain area coverage grows from 38 to 75%, and the FTIR spectra reveal an increased level of crystallinity in the film. Using it diffusion-controlled model and it two-step Langmuir isotherm, the time evolution of the film growth is quantitatively captured. The model predicts the time at which the thin to thick film transition occurs as well its the time required for complete film growth at longer times. The Ward-Tordai equation is also solved to determine the model parameters in the monolayer (thin-film) regime, which occurs during the initial stages of film growth.
Resumo:
Thin films of ZrO2 were prepared by reactive magnetron sputtering. Annealing of the films exhibited a drastic change in the properties due to improved crystallinity and packing density. The root mean square roughness of the sample observed from atomic force microscope is about 5.75 nm which is comparable to the average grain size of the thin film which is about 6 nm obtained from X-ray diffraction. The film annealed at 873 K exhibits an optical band gap of around 4.83 eV and shows +4 oxidation state of zirconium indicating fully oxidized zirconium, whereas higher annealing temperatures lead to oxygen deficiency in the films and this is reflected in their properties. A discontinuity in the imaginary part of the AC conductivity was observed in the frequency range of tens of thousands of Hz, where as, the real part does not show such behavior.
Resumo:
We propose and demonstrate a technique for electrical detection of polarized spins in semiconductors in zero applied magnetic fields. Spin polarization is generated by optical injection using circularly polarized light which is modulated rapidly using an electro-optic cell. The modulated spin polarization generates a weak time-varying magnetic field which is detected by a sensitive radio-frequency coil. Using a calibrated pickup coil and amplification electronics, clear signals were obtained for bulk GaAs and Ge samples from which an optical spin orientation efficiency of 4.8% could be determined for Ge at 1342 nm excitation wavelength. In the presence of a small external magnetic field, the signal decayed according to the Hanle effect, from which a spin lifetime of 4.6 +/- 1.0 ns for electrons in bulk Ge at 127 K was extracted.
Resumo:
Recent studies in drug development have shown that curcumin can be a good competent due to its improved anticancer, antioxidant, anti-proliferative, and anti-inflammatory activities. A detailed real time characterization of drug (curcumin)-cell interaction is carried out in human nasopharyngeal cancer cells using atomic force microscopy. Nanocurcumin shows an enhanced uptake over micron sized drugs attributed to the receptor mediated route. Cell membrane stiffness plays a critical role in the drug endocytosis in nasopharyngeal cancer cells. (C) 2011 American Institute of Physics. [doi:10.1063/1.3653388]
Resumo:
An experimental setup has been realized to measure weak magnetic moments which can be modulated at radio frequencies (similar to 1-5 MHz). Using an optimized radio-frequency (RF) pickup coil and lock-in amplifier, an experimental sensitivity of 10(-15) Am(2) corresponding to 10(-18) emu has been demonstrated with a 1 s time constant. The detection limit at room temperature is 9.3 x 10(-16) Am(2)/root Hz limited by Johnson noise of the coil. The setup has been used to directly measure the magnetic moment due to a small number (similar to 7 x 10(8)) of spin polarized electrons generated by polarization modulated optical radiation in GaAs and Ge. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3654229]
Resumo:
This paper deals with preparation of nanocomposites using modified nanoclay (organoclay) and polypropylene (PP), with, and without compatibilizer (m-TMI-g-PP) to study the effects of modified nanoclay and compatibilizer on viscoelastic properties. Nanocomposites were prepared in two steps; compounding of master batch of nanoclay, polypropylene and m-TMI-g-PP in a torque rheometer and blending of this master-batch with polypropylene in a twin-screw extruder in the specific proportions to yield 3-9% nanoclay by weight in the composite. Dynamic Mechanical Analysis (DMA) tests were carried out to investigate the viscoelastic behavior of virgin polypropylene and nanocomposites. The dynamic mechanical properties such as storage modulus (E'), loss modulus (E `') and damping coefficient (tand) of PP and nano-composites were investigated with and without compatibilizer in the temperature range of -40 degrees C to 140 degrees C at a step of 5 degrees C and frequency range of 5 Hz to 100 Hz at a step of 10 Hz. Storage modulus and loss modulus of the nano-composites was significantly higher than virgin polypropylene throughout the temperature range. Storage modulus of the composites increased continuously with increasing nano-content from 3% to 9%. Composites prepared with compatibilizer exhibited inferior storage modulus than the composites without compatibilizer. Surface morphology such as dispersion of nanoclay in the composites with and without compatibilizer was analyzed through Atomic Force Microscope (AFM) that explained the differences in viscoelastic behavior of composites. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We report on the resonant frequency modulation of inertial microelectromechanical systems (MEMS) structures due to squeeze film stiffness over a range of working pressures. Squeeze film effects have been studied extensively, but mostly in the context of damping and Q-factor determination of dynamic MEMS structures, typically suspended over a fixed substrate with a very thin air gap. Here, we show with experimental measurements and analytical calculations how the pressure-dependent air springs (squeeze film stiffness) change the resonant frequency of an inertial MEMS structure by as much as five times. For capturing the isolated effect of the squeeze film stiffness, we first determine the static stiffness of our structure with atomic force microscope probing and then study the effect of the air spring by measuring the dynamic response of the structure, thus finding the resonant frequencies while varying the air pressure from 1 to 905 mbar. We also verify our results by analytical and Finite Element Method calculations. Our findings show that the pressure-dependent squeeze film stiffness can affect a rather huge range of frequency modulation (>400%) and, therefore, can be used as a design parameter for exploiting this effect in MEMS devices. 2014-0310]
Resumo:
Atomic force Microscopy (AFM) has become a versatile tool in biology due to its advantage of high-resolution imaging of biological samples close to their native condition. Apart from imaging, AFM can also measure the local mechanical properties of the surfaces. In this study, we explore the possibility of using AFM to quantify the rough eye phenotype of Drosophila melanogaster through mechanical properties. We have measured adhesion force, stiffness and elastic modulus of the corneal lens using AFM. Various parameters affecting these measurements like cantilever stiffness and tip geometry are systematically studied and the measurement procedures are standardized. Results show that the mean adhesion force of the ommatidial surface varies from 36 nN to 16 nN based on the location. The mean stiffness is 483 +/- 5 N/m, and the elastic modulus is 3.4 +/- 0.05 GPa (95% confidence level) at the center of ommatidia. These properties are found to be different in corneal lens of eye expressing human mutant tau gene (mutant). The adhesion force, stiffness and elastic modulus are decreased in the mutant. We conclude that the measurement of surface and mechanical properties of D. melanogaster using AFM can be used for quantitative evaluation of `rough eye' surface. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The high-kappa gate dielectrics, specifically amorphous films offer salient features such as exceptional mechanical flexibility, smooth surfaces and better uniformity associated with low leakage current density. In this work, similar to 35 nm thick amorphous ZrO2 films were deposited on silicon substrate at low temperature (300 degrees C, 1 h) from facile spin-coating method and characterized by various analytical techniques. The X-ray diffraction and X-ray photoelectron spectroscopy reveal the formation of amorphous phase ZrO2, while ellipsometry analysis together with the Atomic Force Microscope suggest the formation of dense film with surface roughness of 1.5 angstrom, respectively. The fabricated films were integrated in metal-oxide-semiconductor (MOS) structures to check the electrical capabilities. The oxide capacitance (C-ox), flat band capacitance (C-FB), flat band voltage (V-FB), dielectric constant (kappa) and oxide trapped charges (Q(ot)) extracted from high frequency (1 MHz) C-V curve are 186 pF, 104 pF, 0.37V, 15 and 2 x 10(-11) C, respectively. The small flat band voltage 0.37V, narrow hysteresis and very little frequency dispersion between 10 kHz-1 MHz suggest an excellent a-ZrO2/Si interface with very less trapped charges in the oxide. The films exhibit a low leakage current density 4.7 x 10(-9)A/cm(2) at 1V. In addition, the charge transport mechanism across the MOSC is analyzed and found to have a strong bias dependence. The space charge limited conduction mechanism is dominant in the high electric field region (1.3-5 V) due to the presence of traps, while the trap-supported tunneling is prevailed in the intermediate region (0.35-1.3 V). Low temperature solution processed ZrO2 thin films obtained are of high quality and find their importance as a potential dielectric layer on Si and polymer based flexible electronics. (C) 2016 Published by Elsevier B.V.
Resumo:
The adsorption and competitive adsorption of collagen and bovine serum albumin (BSA) were directly visualized and quantified using atomic force microscopy (AFM) and imaging ellipsometry. Chemically modified silicon surfaces were used as hydrophilic and hydrophobic substrates. The results showed that collagen and BSA in single component solution adsorbed onto a hydrophobic surface two times more than that onto a hydrophilic surface. The competitive adsorption between collagen and BSA showed that serum albumin preferentially adsorbed onto a hydrophobic surface, while collagen on a hydrophilic surface. In the binary solution of BSA (1 mg/ml BSA) and collagen (0.1 mg/ml), nearly 100% of the protein adsorbed onto the hydrophobic surface was BSA, but on the hydrophilic surface only about 6% was BSA. Surface affinity was the main factor controlling the competitive adsorption.
Resumo:
The natural frequencies of a cantilever probe can be tuned with an attached concentrated mass to coincide with the higher harmonics generated in a tapping-mode atomic force microscopy by the nonlinear tip-sample interaction force. We provide a comprehensive map to guide the choice of the mass and the position of the attached particle in order to significantly enhance the higher harmonic signals containing information on the material properties. The first three eigenmodes can be simultaneously excited with only one carefully positioned particle of specific mass to enhance multiple harmonics. Accessing the interaction force qualitatively based on the high-sensitive harmonic signals combines the real-time material characterization with the imaging capability. (C) 2008 American Institute of Physics.