975 resultados para Frequency Domain Spectroscopy
Resumo:
The task of this paper is to develop a Time-Domain Probe Method for the reconstruction of impenetrable scatterers. The basic idea of the method is to use pulses in the time domain and the time-dependent response of the scatterer to reconstruct its location and shape. The method is based on the basic causality principle of timedependent scattering. The method is independent of the boundary condition and is applicable for limited aperture scattering data. In particular, we discuss the reconstruction of the shape of a rough surface in three dimensions from time-domain measurements of the scattered field. In practise, measurement data is collected where the incident field is given by a pulse. We formulate the time-domain fieeld reconstruction problem equivalently via frequency-domain integral equations or via a retarded boundary integral equation based on results of Bamberger, Ha-Duong, Lubich. In contrast to pure frequency domain methods here we use a time-domain characterization of the unknown shape for its reconstruction. Our paper will describe the Time-Domain Probe Method and relate it to previous frequency-domain approaches on sampling and probe methods by Colton, Kirsch, Ikehata, Potthast, Luke, Sylvester et al. The approach significantly extends recent work of Chandler-Wilde and Lines (2005) and Luke and Potthast (2006) on the timedomain point source method. We provide a complete convergence analysis for the method for the rough surface scattering case and provide numerical simulations and examples.
Resumo:
In this paper, a detailed study of the capacitance spectra obtained from Au/doped-polyaniline/Al structures in the frequency domain (0.05 Hz-10 MHz), and at different temperatures (150-340 K) is carried out. The capacitance spectra behavior in semiconductors can be appropriately described by using abrupt cut-off models, since they assume that the electronic gap states that can follow the ac modulation have response times varying rapidly with a certain abscissa, which is dependent on both temperature and frequency. Two models based on the abrupt cut-off concept, formerly developed to describe inorganic semiconductor devices, have been used to analyze the capacitance spectra of devices based on doped polyaniline (PANI), which is a well-known polymeric semiconductor with innumerous potential technological applications. The application of these models allowed the determination of significant parameters, such as Debye length (approximate to 20 nm), position of bulk Fermi level (approximate to 320 meV) and associated density of states (approximate to 2x10(18) eV(-1) cm(-3)), width of the space charge region (approximate to 70 nm), built-in potential (approximate to 780 meV), and the gap states` distribution.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of this paper is to show an alternative representation in time domain of a non-transposed three-phase transmission line decomposed in its exact modes by using two transformation matrices. The first matrix is Clarke's matrix that is real, frequency independent, easily represented in computational transient programs (EMTP) and separates the line into Quasi-modes α, β and zero. After that, Quasi-modes α and zero are decomposed into their exact modes by using a modal transformation matrix whose elements can be synthesized in time domain through standard curve-fitting techniques. The main advantage of this alternative representation is to reduce the processing time because a frequency dependent modal transformation matrix of a three-phase line has nine elements to be represented in time domain while a modal transformation matrix of a two-phase line has only four elements. This paper shows modal decomposition process and eigenvectors of a non-transposed three-phase line with a vertical symmetry plane whose nominal voltage is 440 kV and line length is 500 km. © 2006 IEEE.
Resumo:
Electrochemical analyses on confined electroactive molecular layers, herein exemplified with electroactive self-assembled monolayers, sample current contributions that are significantly influenced by additional nonfaradaic and uncompensated resistance effects that, though unresolved, can strongly distort redox analysis. Prior work has shown that impedance-derived capacitance spectroscopy approaches can cleanly resolve all contributions generated at such films, including those which are related to the layer dipolar/electrostatic relaxation characteristics. We show herein that, in isolating the faradaic and nonfaradaic contributions present within an improved equivalent circuit description of such interfaces, it is possible to accurately simulate subsequently observed cyclic voltammograms (that is, generated current versus potential patterns map accurately onto frequency domain measurements). Not only does this enable a frequency-resolved quantification of all components present, and in so doing, a full validation of the equivalent circuit model utilized, but also facilitates the generation of background subtracted cyclic voltammograms remarkably free from all but faradaic contributions. © 2012 American Chemical Society.
Resumo:
Patellofemoral pain syndrome (PFPS) is the most frequent complaint in orthopedic clinics; although, its etiology remains unclear [Bolgla, 2010; Felicio, 2011]. Trying to understand its causes has been used time analysis of electromyography (EMG), but this method shows controversies. The aim of this study was to apply a method of processing the EMG signal in the frequency domain of the vastus lateralis (VL) and vastus medialis (VM) muscles for the characterization of PFPS.
Resumo:
For many years, RF and analog integrated circuits have been mainly developed using bipolar and compound semiconductor technologies due to their better performance. In the last years, the advance made in CMOS technology allowed analog and RF circuits to be built with such a technology, but the use of CMOS technology in RF application instead of bipolar technology has brought more issues in terms of noise. The noise cannot be completely eliminated and will therefore ultimately limit the accuracy of measurements and set a lower limit on how small signals can be detected and processed in an electronic circuit. One kind of noise which affects MOS transistors much more than bipolar ones is the low-frequency noise. In MOSFETs, low-frequency noise is mainly of two kinds: flicker or 1/f noise and random telegraph signal noise (RTS). The objective of this thesis is to characterize and to model the low-frequency noise by studying RTS and flicker noise under both constant and switched bias conditions. The effect of different biasing schemes on both RTS and flicker noise in time and frequency domain has been investigated.
Resumo:
The inversion of seismo-volcanic events is performed to retrieve the source geometry and to determine volumetric budgets of the source. Such observations have shown to be an important tool for the seismological monitoring of volcanoes. We developed a novel technique for the non-linear constrained inversion of low frequency seismo-volcanic events. Unconstrained linear inversion methods work well when a dense network of broadband seismometers is available. We propose a new constrained inversion technique, which has shown to be efficient also in a reduced network configuration and a low signal-noise ratio. The waveform inversion is performed in the frequency domain, constraining the source mechanism during the event to vary only in its magnitude. The eigenvectors orientation and the eigenvalue ratio are kept constant. This significantly reduces the number of parameters to invert, making the procedure more stable. The method has been tested over a synthetic dataset, reproducing realistic very-long-period (VLP) signals of Stromboli volcano. The information obtained by performing the synthetic tests is used to assess the reliability of the results obtained on a VLP dataset recorded on Stromboli volcano and on a low frequency events recorded at Vesuvius volcano.
Resumo:
Frequency-transformed EEG resting data has been widely used to describe normal and abnormal brain functional states as function of the spectral power in different frequency bands. This has yielded a series of clinically relevant findings. However, by transforming the EEG into the frequency domain, the initially excellent time resolution of time-domain EEG is lost. The topographic time-frequency decomposition is a novel computerized EEG analysis method that combines previously available techniques from time-domain spatial EEG analysis and time-frequency decomposition of single-channel time series. It yields a new, physiologically and statistically plausible topographic time-frequency representation of human multichannel EEG. The original EEG is accounted by the coefficients of a large set of user defined EEG like time-series, which are optimized for maximal spatial smoothness and minimal norm. These coefficients are then reduced to a small number of model scalp field configurations, which vary in intensity as a function of time and frequency. The result is thus a small number of EEG field configurations, each with a corresponding time-frequency (Wigner) plot. The method has several advantages: It does not assume that the data is composed of orthogonal elements, it does not assume stationarity, it produces topographical maps and it allows to include user-defined, specific EEG elements, such as spike and wave patterns. After a formal introduction of the method, several examples are given, which include artificial data and multichannel EEG during different physiological and pathological conditions.
Resumo:
The aim of the present study was to investigate the effects of different speech tasks (recitation of prose (PR), alliteration (AR) and hexameter (HR) verses) and a control task (mental arithmetic (MA) with voicing of the result) on endtidal CO2 (ET-CO2), cerebral hemodynamics; i.e. total hemoglobin (tHb) and tissue oxygen saturation (StO2). tHb and StO2 were measured with a frequency domain near infrared spectrophotometer (ISS Inc., USA) and ET-CO2 with a gas analyzer (Nellcor N1000). Measurements were performed in 24 adult volunteers (11 female, 13 male; age range 22 to 64 years) during task performance in a randomized order on 4 different days to avoid potential carry over effects. Statistical analysis was applied to test differences between baseline, 2 recitation and 5 recovery periods. The two brain hemispheres and 4 tasks were tested separately. Data analysis revealed that during the recitation tasks (PR, AR and HR) StO2 decreased statistically significant (p < 0.05) during PR and AR in the right prefrontal cortex (PFC) and during AR and HR in the left PFC. tHb showed a significant decrease during HR in the right PFC and during PR, AR and HR in the left PFC. During the MA task, StO2 increased significantly. A significant decrease in ET-CO2 was found during all 4 tasks with the smallest decrease during the MA task. In conclusion, we hypothesize that the observed changes in tHb and StO2 are mainly caused by an altered breathing during the tasks that led a lowering of the CO2 content in the blood provoked a cerebral CO2 reaction, i.e. a vasoconstriction of blood vessels due to decreased CO2 pressure and thereby decrease in cerebral blood volume. Therefore, breathing changes should be monitored during brain studies involving speech when using functional near infrared spectroscopy (fNIRS) to ensure a correct interpretation of changes in hemodynamics and oxygenation.
Resumo:
We propose dual-domain filtering, an image processing paradigm that couples spatial domain with frequency domain filtering. Our dual-domain defined filter removes artifacts like residual noise of other image denoising methods and compression artifacts. Moreover, iterating the filter achieves state-of-the-art image denoising results, but with a much simpler algorithm than competing approaches. The simplicity and versatility of the dual-domain filter makes it an attractive tool for image processing.
Resumo:
This paper presents a theoretical analysis of possible jitter impact in application of numeric criterion for fastmeasurement of frequency by coincidence principle. The primary goal is the generation of a signal containing a known amount of each jitter components. This signal was used for testing signals with regular pulse trains. Initially, jitter components are analyzed and modeled individually. Next, sequences for combining different kinds of jitter are modeled, simulated and evaluated. Jitter model simulation in Matlab is utilized to show the independence of frequencymeasurement results on the total jitter present in the reference and desired pulse trains independently. A good agreement between previously introduced theory of fastmeasurement of frequency and simulation in jitter presence is verified; these results allows to engineers use the numeric criterion for fastmeasurement of frequency in spite to interactions among jitter components in various applications for frequency domain sensors.
Resumo:
The evolution of water content on a sandy soil during the sprinkler irrigation campaign, in the summer of 2010, of a field of sugar beet crop located at Valladolid (Spain) is assessed by a capacitive FDR (Frequency Domain Reflectometry) EnviroScan. This field is one of the experimental sites of the Spanish research center for the sugar beet development (AIMCRA). The objective of the work focus on monitoring the soil water content evolution of consecutive irrigations during the second two weeks of July (from the 12th to the 28th). These measurements will be used to simulate water movement by means of Hydrus-2D. The water probe logged water content readings (m3/m3) at 10, 20, 40 and 60 cm depth every 30 minutes. The probe was placed between two rows in one of the typical 12 x 15 m sprinkler irrigation framework. Furthermore, a texture analysis at the soil profile was also conducted. The irrigation frequency in this farm was set by the own personal farmer 0 s criteria that aiming to minimizing electricity pumping costs, used to irrigate at night and during the weekend i.e. longer irrigation frequency than expected. However, the high evapotranspiration rates and the weekly sugar beet water consumption—up to 50mm/week—clearly determined the need for lower this frequency. Moreover, farmer used to irrigate for six or five hours whilst results from the EnviroScan probe showed the soil profile reaching saturation point after the first three hours. It must be noted that AIMCRA provides to his members with a SMS service regarding weekly sugar beet water requirement; from the use of different meteorological stations and evapotranspiration pans, farmers have an idea of the weekly irrigation needs. Nevertheless, it is the farmer 0 s decision to decide how to irrigate. Thus, in order to minimize water stress and pumping costs, a suitable irrigation time and irrigation frequency was modeled with Hydrus-2D. Results for the period above mentioned showed values of water content ranging from 35 and 30 (m3/m3) for the first 10 and 20cm profile depth (two hours after irrigation) to the minimum 14 and 13 (m3/m3) ( two hours before irrigation). For the 40 and 60 cm profile depth, water content moves steadily across the dates: The greater the root activity the greater the water content variation. According to the results in the EnviroScan probe and the modeling in Hydrus-2D, shorter frequencies and irrigation times are suggested.
Resumo:
Axisymmetric shells are analyzed by means of one-dimensional continuum elements by using the analogy between the bending of shells and the bending of beams on elastic foundation. The mathematical model is formulated in the frequency domain. Because the solution of the governing equations of vibration of beams are exact, the spatial discretization only depends on geometrical or material considerations. For some kind of situations, for example, for high frequency excitations, this approach may be more convenient than other conventional ones such as the finite element method.
Resumo:
To perceive a coherent environment, incomplete or overlapping visual forms must be integrated into meaningful coherent percepts, a process referred to as ?Gestalt? formation or perceptual completion. Increasing evidence suggests that this process engages oscillatory neuronal activity in a distributed neuronal assembly. A separate line of evidence suggests that Gestalt formation requires top-down feedback from higher order brain regions to early visual cortex. Here we combine magnetoencephalography (MEG) and effective connectivity analysis in the frequency domain to specifically address the effective coupling between sources of oscillatory brain activity during Gestalt formation. We demonstrate that perceptual completion of two-tone ?Mooney? faces induces increased gamma frequency band power (55?71 Hz) in human early visual, fusiform and parietal cortices. Within this distributed neuronal assembly fusiform and parietal gamma oscillators are coupled by forward and backward connectivity during Mooney face perception, indicating reciprocal influences of gamma activity between these higher order visual brain regions. Critically, gamma band oscillations in early visual cortex are modulated by top-down feedback connectivity from both fusiform and parietal cortices. Thus, we provide a mechanistic account of Gestalt perception in which gamma oscillations in feature sensitive and spatial attention-relevant brain regions reciprocally drive one another and convey global stimulus aspects to local processing units at low levels of the sensory hierarchy by top-down feedback. Our data therefore support the notion of inverse hierarchical processing within the visual system underlying awareness of coherent percepts.