998 resultados para Free Metabelian Lie Algebras
Resumo:
lsoscalar (T = 0) plus isovector (T = 1) pairing Hamiltonian in LS-coupling. which is important for heavy N = Z nuclei, is solvable in terms of a SO(8) Lie algebra for three special values of the mixing parameter that measures the competition between the T = 0 aid T = 1 pairing. The SO(8) algebra is generated, amongst others, by the S = 1, T = 0 and S = 0, T = 1 pair creation and annihilation operators and corresponding to the three values of the mixing parameter, there are three chains of subalgebras: SO(8) superset of SOST (6) superset of SOS(3) circle times SOT(3), SO(8) superset of [SOS(5) superset of SOS(3)] circle times SOT(3) and SO(8) superset of [SOT(5) superset of SOT(3)] circle times SOS(3). Shell model Lie algebras, with only particle number conserving generators, that are complementary to these three chains of subalgebras are identified and they are used in the classification of states for a given number of nucleons. The classification problem is solved explicitly tor states with SO(8) seniority nu = 0, 1, 2, 3 and 4. Using them, hand structures in isospin space are identified for states with nu = 0, 1, 2 and 3. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We derive the current algebra of supersymmetric principal chiral models with a Wess-Zumino term. At the critical point one obtains two commuting super-affine Lie algebras as expected, but, in general, them are intertwining fields connecting both right and left sectors, analogously to the bosonic case. Moreover, in the present supersymmetric extension we have a quadratic algebra, rather than an affine Lie algebra, due to the mixing between bosonic and fermionic fields; the purely fermionic sector displays an affine Lie algebra as well.
Resumo:
The construction of Lie algebras in terms of Jordan algebra generators is discussed. The key to the construction is the triality relation already incorporated into matrix products. A generalisation to Kac-Moody algebras in terms of vertex operators is proposed and may provide a clue for the construction of new representations of Kac-Moody algebras in terms of Jordan fields. © 1988.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Física - IFT
Resumo:
We define the Virasoro algebra action on imaginary Verma modules for affine and construct an analogue of the Knizhnik-Zamolodchikov equation in the operator form. Both these results are based on a realization of imaginary Verma modules in terms of sums of partial differential operators.
Resumo:
In the paper, a complete description of the delta-derivations and the delta-superderivations of semisimple finite-dimensional Jordan superalgebras over an algebraically closed field of characteristic p not equal 2 is given. In particular, new examples of nontrivial (1/2)-derivations and odd (1/2)-superderivations are given that are not operators of right multiplication by an element of the superalgebra.
Resumo:
Espongo i fatti di base della teoria delle rappresentazioni con lo scopo di indagare i possibili modi in cui un dato gruppo di Lie o algebra di Lie agisce su uno spazio vettoriale di dimensione finita. Tali risultati verranno applicati all'algebra di Lie del gruppo speciale lineare.
Resumo:
Representations of the superalgebra osp(2/2)(k)((1)) and current superalgebra. osp(2/2)k in the standard basis are investigated. All finite-dimensional typical and atypical representations of osp(2/2) are constructed by the vector coherent state method. Primary fields of the non-unitary conformal field theory associated with osp(2/2)(k)((1)) in the standard basis are obtained for arbitrary level k. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We obtain a diagonal solution of the dual reflection equation for the elliptic A(n-1)((1)) solid-on-solid model. The isomorphism between the solutions of the reflection equation and its dual is studied. (C) 2004 American Institute of Physics.
Resumo:
In this thesis we consider algebro-geometric aspects of the Classical Yang-Baxter Equation and the Generalised Classical Yang-Baxter Equation. In chapter one we present a method to construct solutions of the Generalised Classical Yang-Baxter Equation starting with certain sheaves of Lie algebras on algebraic curves. Furthermore we discuss a criterion to check unitarity of such solutions. In chapter two we consider the special class of solutions coming from sheaves of traceless endomorphisms of simple vector bundles on the nodal cubic curve. These solutions are quasi-trigonometric and we describe how they fit into the classification scheme of such solutions. Moreover, we describe a concrete formula for these solutions. In the third and final chapter we show that any unitary, rational solution of the Classical Yang-Baxter Equation can be obtained via the method of chapter one applied to a sheaf of Lie algebras on the cuspidal cubic curve.
Resumo:
Es mi intención centrar mis investigaciones en los próximos años en las álgebras de Lie tipo H. Es nuestro objetivo encontrar nuevas familias de álgebras regulares no de tipo H y verificar la existencia o no de irreducibles cumpliendo de estas propiedades. En particular es interesante plantear su cuantización, es decir encontrar estructuras de álgebras de Hopf que sean deformaciones del álgebra envolvente correspondiente al álgebra de Lie en estudio. En particular estudiaremos si existen cuantizaciones quasitriangulares lo que nos llevaría soluciones de la ecuación de Yang-Baxter cuántica. Hasta ahora hemos logrado la cuantización en ciertos casos particulares. Para comprender cómo deben ser hechas las cuantizaciones en forma más general es necesario realizar un estudio sistemático de las estructuras de la biálgebra de las álgebras de Lie de tipo H. En particular se tratarán de detectar estructuras de biálgebra quasitriangulares y por consiguientes soluciones de la ecuación de Yang-Baxter clásica. Es un resultado conocido que las funciones de theta se pueden expresar como coeficiente matricial de la representación de Stone-Von Neumann. De los teoremas de Stone-Von Neumann para álgebras de tipo H surgen entonces funciones que serían una generalización de las funciones theta; es nuestro objetivo encontrar propiedades de estas funciones que puedan ser de interés.
Resumo:
Let E be a number field and G be a finite group. Let A be any O_E-order of full rank in the group algebra E[G] and X be a (left) A-lattice. We give a necessary and sufficient condition for X to be free of given rank d over A. In the case that the Wedderburn decomposition E[G] \cong \oplus_xM_x is explicitly computable and each M_x is in fact a matrix ring over a field, this leads to an algorithm that either gives elements \alpha_1,...,\alpha_d \in X such that X = A\alpha_1 \oplus ... \oplusA\alpha_d or determines that no such elements exist. Let L/K be a finite Galois extension of number fields with Galois group G such that E is a subfield of K and put d = [K : E]. The algorithm can be applied to certain Galois modules that arise naturally in this situation. For example, one can take X to be O_L, the ring of algebraic integers of L, and A to be the associated order A(E[G];O_L) \subseteq E[G]. The application of the algorithm to this special situation is implemented in Magma under certain extra hypotheses when K = E = \IQ.
Resumo:
Let R be a noncommutative central simple algebra, the center k of which is not absolutely algebraic, and consider units a,b of R such that {a,a(b)} freely generate a free group. It is shown that such b can be chosen from suitable Zariski dense open subsets of R, while the a can be chosen from a set of cardinality \k\ (which need not be open).
Resumo:
Let * be an involution of a group algebra FG induced by an involution of the group G. For char F not equal 2, we classify the torsion groups G with no elements of order 2 whose Lie algebra of *-skew elements is nilpotent.