868 resultados para Fragments of a discourse
Resumo:
Axiomatic bases of admissible rules are obtained for fragments of the substructural logic R-mingle. In particular, it is shown that a ‘modus-ponens-like’ rule introduced by Arnon Avron forms a basis for the admissible rules of its implication and implication–fusion fragments, while a basis for the admissible rules of the full multiplicative fragment requires an additional countably infinite set of rules. Indeed, this latter case provides an example of a three-valued logic with a finitely axiomatizable consequence relation that has no finite basis for its admissible rules.
Resumo:
Estampada en la misma hoja con el grabado de "Vista de Almenara, tomada de Murviedro" y con huella de plancha común (53'5 x 31'5 cm)
Resumo:
Dominant negative inhibition is most commonly seen when a mutant subunit of a multisubunit protein is coexpressed with the wild-type protein so that assembly of a functional oligomer is impaired. By analogy, it should be possible to interfere with the functional assembly of a monomeric enzyme by interfering with the folding pathway. Experiments in vitro by others suggested that fragments of a monomeric enzyme might be exploited for this purpose. We report here dominant negative inhibition of bacterial cell growth by expression of fragments of a tRNA synthetase. Inhibition is fragment-specific, as not all fragments cause inhibition. An inhibitory fragment characterized in more detail forms a specific complex with the intact enzyme in vivo, leading to enzyme inactivation. This fragment also associated stoichiometrically with the full-length enzyme in vitro after denaturation and refolding, and the resulting complex was catalytically inactive. Inhibition therefore appears to arise from an interruption in the folding pathway of the wild-type enzyme, thus suggesting a new strategy to design dominant negative inhibitors of monomeric enzymes.
Resumo:
To investigate the molecular basis of the voltage sensor that triggers excitation–contraction (EC) coupling, the four-domain pore subunit of the dihydropyridine receptor (DHPR) was cut in the cytoplasmic linker between domains II and III. cDNAs for the I-II domain (α1S 1–670) and the III-IV domain (α1S 701-1873) were expressed in dysgenic α1S-null myotubes. Coexpression of the two fragments resulted in complete recovery of DHPR intramembrane charge movement and voltage-evoked Ca2+ transients. When fragments were expressed separately, EC coupling was not recovered. However, charge movement was detected in the I-II domain expressed alone. Compared with I-II and III-IV together, the charge movement in the I-II domain accounted for about half of the total charge (Qmax = 3 ± 0.23 vs. 5.4 ± 0.76 fC/pF, respectively), and the half-activation potential for charge movement was significantly more negative (V1/2 = 0.2 ± 3.5 vs. 22 ± 3.4 mV, respectively). Thus, interactions between the four internal domains of the pore subunit in the assembled DHPR profoundly affect the voltage dependence of intramembrane charge movement. We also tested a two-domain I-II construct of the neuronal α1A Ca2+ channel. The neuronal I-II domain recovered charge movements like those of the skeletal I-II domain but could not assist the skeletal III-IV domain in the recovery of EC coupling. The results demonstrate that a functional voltage sensor capable of triggering EC coupling in skeletal myotubes can be recovered by the expression of complementary fragments of the DHPR pore subunit. Furthermore, the intrinsic voltage-sensing properties of the α1A I-II domain suggest that this hemi-Ca2+ channel could be relevant to neuronal function.
Resumo:
We have developed an approach to study changes in gene expression by selective PCR amplification and display of 3' end restriction fragments of double-stranded cDNAs. This method produces highly consistent and reproducible patterns, can detect almost all mRNAs in a sample, and can resolve hidden differences such as bands that differ in their sequence but comigrate on a gel. Bands corresponding to known cDNAs move to predictable positions on the gel, making this a powerful approach to correlate gel patterns with cDNA data bases. Applying this method, we have examined differences in gene expression patterns during T-cell activation. Of a total of 700 bands that were evaluated in this study, as many as 3-4% represented mRNAs that are upregulated, while approximately 2% were down-regulated within 4 hr of activation of Jurkat T cells. These and other results suggest that this approach is suitable for the systematic, expeditious, and nearly exhaustive elucidation of subtle changes in the patterns of gene expression in cells with altered physiologic states.