938 resultados para Fractional Order Differentiator


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dynamic systems involving convolution integrals with decaying kernels, of which fractionally damped systems form a special case, are non-local in time and hence infinite dimensional. Straightforward numerical solution of such systems up to time t needs O(t(2)) computations owing to the repeated evaluation of integrals over intervals that grow like t. Finite-dimensional and local approximations are thus desirable. We present here an approximation method which first rewrites the evolution equation as a coupled in finite-dimensional system with no convolution, and then uses Galerkin approximation with finite elements to obtain linear, finite-dimensional, constant coefficient approximations for the convolution. This paper is a broad generalization, based on a new insight, of our prior work with fractional order derivatives (Singh & Chatterjee 2006 Nonlinear Dyn. 45, 183-206). In particular, the decaying kernels we can address are now generalized to the Laplace transforms of known functions; of these, the power law kernel of fractional order differentiation is a special case. The approximation can be refined easily. The local nature of the approximation allows numerical solution up to time t with O(t) computations. Examples with several different kernels show excellent performance. A key feature of our approach is that the dynamic system in which the convolution integral appears is itself approximated using another system, as distinct from numerically approximating just the solution for the given initial values; this allows non-standard uses of the approximation, e. g. in stability analyses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fractional-order derivatives appear in various engineering applications including models for viscoelastic damping. Damping behavior of materials, if modeled using linear, constant coefficient differential equations, cannot include the long memory that fractional-order derivatives require. However, sufficiently great rnicrostructural disorder can lead, statistically, to macroscopic behavior well approximated by fractional order derivatives. The idea has appeared in the physics literature, but may interest an engineering audience. This idea in turn leads to an infinite-dimensional system without memory; a routine Galerkin projection on that infinite-dimensional system leads to a finite dimensional system of ordinary differential equations (ODEs) (integer order) that matches the fractional-order behavior over user-specifiable, but finite, frequency ranges. For extreme frequencies (small or large), the approximation is poor. This is unavoidable, and users interested in such extremes or in the fundamental aspects of true fractional derivatives must take note of it. However, mismatch in extreme frequencies outside the range of interest for a particular model of a real material may have little engineering impact.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study a fractional model for malaria transmission under control strategies.Weconsider the integer order model proposed by Chiyaka et al. (2008) in [15] and modify it to become a fractional order model. We study numerically the model for variation of the values of the fractional derivative and of the parameter that models personal protection, b. From observation of the figures we conclude that as b is increased from 0 to 1 there is a corresponding decrease in the number of infectious humans and infectious mosquitoes, for all values of α. This means that this result is invariant for variation of fractional derivative, in the values tested. These results are in agreement with those obtained in Chiyaka et al.(2008) [15] for α = 1.0 and suggest that our fractional model is epidemiologically wellposed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The application of fractional-order PID controllers is now an active field of research. This article investigates the effect of fractional (derivative and integral) orders upon system's performance in the velocity control of a servo system. The servo system consists of a digital servomechanism and an open-architecture software environment for real-time control experiments using MATLAB/Simulink tools. Experimental responses are presented and analyzed, showing the effectiveness of fractional controllers. Comparison with classical PID controllers is also investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper addresses the calculation of fractional order expressions through rational fractions. The article starts by analyzing the techniques adopted in the continuous to discrete time conversion. The problem is re-evaluated in an optimization perspective by tacking advantage of the degree of freedom provided by the generalized mean formula. The results demonstrate the superior performance of the new algorithm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper addresses the calculation of derivatives of fractional order for non-smooth data. The noise is avoided by adopting an optimization formulation using genetic algorithms (GA). Given the flexibility of the evolutionary schemes, a hierarchical GA composed by a series of two GAs, each one with a distinct fitness function, is established.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper studies the describing function (DF) of systems constituted by a mass subjected to nonlinear friction. The friction force is decomposed into two components, namely, the viscous and the Coulomb friction. The system dynamics is analyzed in the DF perspective revealing a fractional-order behavior. The reliability of the DF method is evaluated through the signal harmonic contents.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The concept of differentiation and integration to non-integer order has its origins in the seventeen century. However, only in the second-half of the twenty century appeared the first applications related to the area of control theory. In this paper we consider the study of a heat diffusion system based on the application of the fractional calculus concepts. In this perspective, several control methodologies are investigated and compared. Simulations are presented assessing the performance of the proposed fractional-order algorithms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper studies the dynamics of foot–ground interaction in hexapod locomotion systems. For that objective the robot motion is characterized in terms of several locomotion variables and the ground is modelled through a non-linear spring-dashpot system, with parameters based on the studies of soil mechanics. Moreover, it is adopted an algorithm with foot-force feedback to control the robot locomotion. A set of model-based experiments reveals the influence of the locomotion velocity on the foot–ground transfer function, which presents complex-order dynamics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we propose the use of the least-squares based methods for obtaining digital rational approximations (IIR filters) to fractional-order integrators and differentiators of type sα, α∈R. Adoption of the Padé, Prony and Shanks techniques is suggested. These techniques are usually applied in the signal modeling of deterministic signals. These methods yield suboptimal solutions to the problem which only requires finding the solution of a set of linear equations. The results reveal that the least-squares approach gives similar or superior approximations in comparison with other widely used methods. Their effectiveness is illustrated, both in the time and frequency domains, as well in the fractional differintegration of some standard time domain functions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a fractional model for computer virus propagation. The model includes the interaction between computers and removable devices. We simulate numerically the model for distinct values of the order of the fractional derivative and for two sets of initial conditions adopted in the literature. We conclude that fractional order systems reveal richer dynamics than the classical integer order counterpart. Therefore, fractional dynamics leads to time responses with super-fast transients and super-slow evolutions towards the steady-state, effects not easily captured by the integer order models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a fractional model for computer virus propagation. The model includes the interaction between computers and removable devices. We simulate numerically the model for distinct values of the order of the fractional derivative and for two sets of initial conditions adopted in the literature. We conclude that fractional order systems reveal richer dynamics than the classical integer order counterpart. Therefore, fractional dynamics leads to time responses with super-fast transients and super-slow evolutions towards the steady-state, effects not easily captured by the integer order models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

While fractional calculus (FC) is as old as integer calculus, its application has been mainly restricted to mathematics. However, many real systems are better described using FC equations than with integer models. FC is a suitable tool for describing systems characterised by their fractal nature, long-term memory and chaotic behaviour. It is a promising methodology for failure analysis and modelling, since the behaviour of a failing system depends on factors that increase the model’s complexity. This paper explores the proficiency of FC in modelling complex behaviour by tuning only a few parameters. This work proposes a novel two-step strategy for diagnosis, first modelling common failure conditions and, second, by comparing these models with real machine signals and using the difference to feed a computational classifier. Our proposal is validated using an electrical motor coupled with a mechanical gear reducer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inspired in dynamic systems theory and Brewer’s contributions to apply it to economics, this paper establishes a bond graph model. Two main variables, a set of inter-connectivities based on nodes and links (bonds) and a fractional order dynamical perspective, prove to be a good macro-economic representation of countries’ potential performance in nowadays globalization. The estimations based on time series for 50 countries throughout the last 50 decades confirm the accuracy of the model and the importance of scale for economic performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two different ways of performing low-energy electron diffraction (LEED) structure determinations for the p(2 x 2) structure of oxygen on Ni {111} are compared: a conventional LEED-IV structure analysis using integer and fractional-order IV-curves collected at normal incidence and an analysis using only integer-order IV-curves collected at three different angles of incidence. A clear discrimination between different adsorption sites can be achieved by the latter approach as well as the first and the best fit structures of both analyses are within each other's error bars (all less than 0.1 angstrom). The conventional analysis is more sensitive to the adsorbate coordinates and lateral parameters of the substrate atoms whereas the integer-order-based analysis is more sensitive to the vertical coordinates of substrate atoms. Adsorbate-related contributions to the intensities of integer-order diffraction spots are independent of the state of long-range order in the adsorbate layer. These results show, therefore, that for lattice-gas disordered adsorbate layers, for which only integer-order spots are observed, similar accuracy and reliability can be achieved as for ordered adsorbate layers, provided the data set is large enough.