968 resultados para Force-Extension Relationship
Resumo:
Pure Y2O3 and Y2O3-ZrO2 solid solutions have been prepared by melt atomization and by pyrolysis of nitrate solutions. Extended solubility is readily achieved in both techniques for the entire composition range investigated: melts with 0-30% ZrO2 and precursors with 0-50% ZrO2. However, solidification of under cooled droplets yields almost exclusively single phase powders with the structure of cubic yttria (D5(3)). In contrast, the pyrolysis route leads to a sequence of metastable microstructures beginning with a nanocrystalline disordered fluorite-based (C1) solid solution. Further heating leads to the evolution of much larger (micron size) flake crystals with a {001} texture, concurrent with partial ordering of the oxygen ions to the sites occupied in the D5(3) structure. The driving force for ordering and the rate of grain growth decrease with increasing ZrO2 addition. Abrupt heating to high temperatures or electron irradiation can induce ordering without substantial grain growth. There is no significant reduction in porosity during the recrystallization, which with the other observations suggests that grain growth is driven by the free energy available for the ordering transformation from fluorite to the yttria structure. This route offers opportunities for single crystal thin film development at relatively low processing temperatures.
Resumo:
Ethylene gas is burnt and the soot generated is sampled thermophoretically at different heights along the flame axis starting from a region close to the root of the flame. The morphology and crystallinity of the particle are recorded using high resolution transmission electron microscopes. The hardness of a single particle is measured using a nanoindenter. The frictional resistance and material removal of a particle are measured using an atomic force microscope. The particles present in the mid-flame region are found to have a crystalline shell. The ones at the flame root are found to be highly disordered and the ones at the flame tip and above have randomly distributed pockets of short range order. The physical state of a particle is found to relate, but not very strongly, with the mechanical and tribological properties of the particles.
Resumo:
Production of high tip deflection in a piezoelectric bimorph laminar actuator by applying high voltage is limited by many physical constraints. Therefore, piezoelectric bimorph actuator with a rigid extension of non-piezoelectric material at its tip is used to increase the tip deflection of such an actuator. Research on this type of piezoelectric bending actuator is either limited to first order constitutive relations, which do not include non-linear behavior of piezoelectric element at high electric field, or limited to curve fitting techniques. Therefore, this paper considers high electric field, and analytically models tapered piezoelectric bimorph actuator with a rigid extension of non-piezoelectric material at its tip. The stiffness, capacitance, effective tip deflection, block force, output strain energy, output energy density, input electrical energy and energy efficiency of the actuator are calculated analytically. The paper also discusses the multi-objective optimization of this type of actuator subjected to the mechanical and electrical constraints.
Resumo:
Drosophila germ-band extension (GBE) is an example of the convergence and extension movements that elongate and narrow embryonic tissues. To understand the collective cell behaviours underlying tissue morphogenesis, we have continuously quantified cell intercalation and cell shape change during GBE. We show that the fast, early phase of GBE depends on cell shape change in addition to cell intercalation. In antero-posterior patterning mutants such as those for the gap gene Krüppel, defective polarized cell intercalation is compensated for by an increase in antero-posterior cell elongation, such that the initial rate of extension remains the same. Spatio-temporal patterns of cell behaviours indicate that an antero-posterior tensile force deforms the germ band, causing the cells to change shape passively. The rate of antero-posterior cell elongation is reduced in twist mutant embryos, which lack mesoderm. We propose that cell shape change contributing to germ-band extension is a passive response to mechanical forces caused by the invaginating mesoderm.
Resumo:
We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidized Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO(2) polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress, and interactions with single water molecules of a natively oxidized Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidized and amorphous silica surfaces of 97 and 90 mJm(2), respectively, at a water adsorption coverage of approximately 1 ML. The difference arises from the stronger interaction of the natively oxidized surface with liquid water, resulting in a higher heat of immersion (203 vs 166 mJm(2)), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller densities with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account.
Resumo:
Aiming at understanding how a liquid film on a substrate affects the atomic force microscopic image in experiments, we present an analytical representation of the shape of liquid surface under van der Waals interaction induced by a non-contact probe tip. The analytical expression shows good consistence with the corresponding numerical results. According to the expression, we find that the vertical scale of the liquid dome is mainly governed by a combination of van der Waals force, surface tension and probe tip radius, and is weekly related to gravity. However, its horizontal extension is determined by the capillary length.
Resumo:
Published as an article in: Journal of Population Economics, 2004, vol. 17, issue 1, pages 1-16.
Resumo:
The peel test is commonly used to determine the strength of adhesive joints. In its simplest form, a thin flexible strip which has been bonded to a rigid surface is peeled from the substrate at a constant rate and the peeling force which is applied to the debonding surfaces by the tension in the tape is measured. Peeling can be carried out with the peel angle, i.e. the angle made by the peel force with the substrate surface, from any value above about 10° although peeling tests at 90 and 180° are most common. If the tape is sufficiently thin for its bending resistance to be negligibly small then as well as the debonding or decohesion energy associated with the adhesive in and around the point of separation, the relation between the peeling force and the peeling angle is influenced both by the mechanical properties of the tape and any pre-strain locked into the tape during its application to the substrate. The analytic solution for a tape material which can be idealised as elastic perfectly-plastic is well established. Here, we present a more general form of analysis, applicable in principle to any constitutive relation between tape load and tape extension. Non-linearity between load and extension is of increasing significance as the peel angle is decreased: the model presented is consistent with existing equations describing the failure of a lap joint between non-linear materials. The analysis also allows for energy losses within the adhesive layer which themselves may be influenced by both peel rate and peel angle. We have experimentally examined the application of this new analysis to several specific peeling cases including tapes of cellophane, poly-vinyl chloride and PTFE. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
A system of equations describing the relationship of change agent in extension education and client (e.g. a leader of a local community) is presented. The main task of the former is to ensure that he is able to transfer information to the latter, also learning difficulties involved and passing them into institutions of higher learning.
Resumo:
Nanomagnetic structures have the potential to surpass silicon's scaling limitations both as elements in hybrid CMOS logic and as novel computational elements. Magnetic force microscopy (MFM) offers a convenient characterization technique for use in the design of such nanomagnetic structures. MFM measures the magnetic field and not the sample's magnetization. As such the question of the uniqueness of the relationship between an external magnetic field and a magnetization distribution is a relevant one. To study this problem we present a simple algorithm which searches for magnetization distributions consistent with an external magnetic field and solutions to the micromagnetic equations' qualitative features. The algorithm is not computationally intensive and is found to be effective for our test cases. On the basis of our results we propose a systematic approach for interpreting MFM measurements.
Resumo:
It is found that there is a linear relationship between log P-w, and the parameter term V-f/0.5 E(coh) [1+(delta(w) - delta(p))(2)/delta(p)(2), from the water permeability (P-w) data of 21 polymers covering 4 orders of magnitude. This correlation may be useful in choosing membrane materials for dehumidification of gases.
Resumo:
Polysaccharides isolated from Porphyra (porphyran) have been known to have diverse biological activities, including immunomodulatory and antioxidant activities. The molecular weight-antiaging activity relationship of degraded porphyrans was examined in this study. Natural porphyran was extracted from P. haitanensis, and then was degraded into different molecular weight fractions, P1 molecular weight 49 kDa, P2 molecular weight 30 kDa, P3 molecular weight 8.2 kDa, by free radical. The influence on life span and vitality of porphyrans were carried out on Drosophila melanogaster. We found that all the degraded porphyrans and natural porphyran (P), added daily to the diet, can significantly increase the life span of D. melanogaster, except for P3. Among them, P1 exhibited the most prolonging life span activity. Furthermore, vitality of middle-aged flies (assessed by measuring their mating capacity) receiving porphyrans was increased considerably in comparison with the controls. Finally, in the heat-stress test, we observed a remarkable increase in survival time, especially in P3-diet groups. These results suggest that porphyrans may be effective in reducing the rate of the aging process and molecular weight has important influence on the effects. It seems that P1 and P2, possessed higher molecular weight, may be more useful in normal metabolic condition and P3, possessed the lowest molecular weight, may be more beneficial for D. melanogaster in stress condition. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Training that is relevant to employers is not necessarily enriching for employees, especially those on the lower salary scales. The authors argue that the analysis of training and development needs to be understood in the context of the employment relationship. Drawing on reasearch evidence from six case studies in the public sector, the article examines the impact of changes in work organisation on workplace learning, managers' and employees' own strategies towards it and the limitations of tools such as appraisal. Since employees' existing qualifications are poorly utilised and their development needs often frustrated, issues concerning job design, occupational progression routes and employee entitlements need to be addressed
Resumo:
Tod, D. A., Iredale, F., Gill, N. (2003). 'Psyching-up' and muscular force production. Sports Medicine, 33 (1), 47-58. RAE2008
Resumo:
BACKGROUND: Anterior cruciate ligament (ACL) reconstruction is associated with a high incidence of second tears (graft tears and contralateral ACL tears). These secondary tears have been attributed to asymmetrical lower extremity mechanics. Knee bracing is one potential intervention that can be used during rehabilitation that has the potential to normalize lower extremity asymmetry; however, little is known about the effect of bracing on movement asymmetry in patients following ACL reconstruction. HYPOTHESIS: Wearing a knee brace would increase knee joint flexion and joint symmetry. It was also expected that the joint mechanics would become more symmetrical in the braced condition. OBJECTIVE: To examine how knee bracing affects knee joint function and symmetry over the course of rehabilitation in patients 6 months following ACL reconstruction. STUDY DESIGN: Controlled laboratory study. LEVEL OF EVIDENCE: Level 3. METHODS: Twenty-three adolescent patients rehabilitating from ACL reconstruction surgery were recruited for the study. The subjects all underwent a motion analysis assessment during a stop-jump activity with and without a functional knee brace on the surgical side that resisted extension for 6 months following the ACL reconstruction surgery. Statistical analysis utilized a 2 × 2 (limb × brace) analysis of variance with a significant alpha level of 0.05. RESULTS: Subjects had increased knee flexion on the surgical side when they were braced. The brace condition increased knee flexion velocity, decreased the initial knee flexion angle, and increased the ground reaction force and knee extension moment on both limbs. Side-to-side asymmetry was present across conditions for the vertical ground reaction force and knee extension moment. CONCLUSION: Wearing a knee brace appears to increase lower extremity compliance and promotes normalized loading on the surgical side. CLINICAL RELEVANCE: Knee extension constraint bracing in postoperative ACL patients may improve symmetry of lower extremity mechanics, which is potentially beneficial in progressing rehabilitation and reducing the incidence of second ACL tears.