934 resultados para Flow-pressure response
Resumo:
Artigo original Ergoespirometria
Resumo:
Pretende-se com este trabalho de Projecto de Mestrado conceber uma câmara frigorífica de 20000 m3 para armazenar produtos congelados e estudar um sistema frigorífico com dois fluidos frigorigénios que serão o CO2 (R-744) e o NH3 (R-717) O trabalho inicia-se com a definição dos objectivos principais para o projecto de um sistema frigorífico deste tipo. Após a definição dos objectivos, o projecto propõe um estudo termodinâmico do CO2 (R-744) como fluido frigorigénio, definindo se o seu historial de utilização, características principais, diagrama pressão-entalpia com a distinção das diversas fases do fluído, comparação em diversos parâmetros com outros fluidos, o porquê da utilização deste fluído, problemas comuns em sistemas com a presença deste fluído, entre outros parâmetros de estudo. De seguida será feito o dimensionamento de uma câmara frigorífica de 20000 m3 para armazenar produtos congelados paletizados através de um balanço térmico manual e um balanço térmico informático através do programa da Centauro comparando no final o resultado dos dois métodos. Será feito uma descrição das características básicas da câmara frigorífica com um esquema simples do edifício. Será abordado de seguida o sistema frigorífico a CO2 (R-744) e a NH3 (R-717) nas suas diversas características, nomeadamente no cálculo de caudais, diagrama pressão-entalpia, dimensionamento de tubagens e finalmente selecção de equipamento. Procede-se assim também ao estudo um sistema apenas a NH3 (R-717) com as suas diversas características nomeadamente no cálculo de caudais, diagrama pressão-entalpia, dimensionamento de tubagens e finalmente selecção dos equipamentos mais importantes, para que desta forma se proceda à comparação dos dois sistemas a nível energético, consumo eléctrico e manutenção de equipamentos. Finalmente proceder-se-á interpretação de resultados com o objectivo final de escolher a melhor solução nos vários parâmetros de comparação, para o esquema em questão.
Resumo:
OBJECTIVE: To compare blood pressure response to dynamic exercise in hypertensive patients taking trandolapril or captopril. METHODS: We carried out a prospective, randomized, blinded study with 40 patients with primary hypertension and no other associated disease. The patients were divided into 2 groups (n=20), paired by age, sex, race, and body mass index, and underwent 2 symptom-limited exercise tests on a treadmill before and after 30 days of treatment with captopril (75 to 150 mg/day) or trandolapril (2 to 4 mg/day). RESULTS: The groups were similar prior to treatment (p<0.05), and both drugs reduced blood pressure at rest (p<0.001). During treatment, trandolapril caused a greater increase in functional capacity (+31%) than captopril (+17%; p=0.01) did, and provided better blood pressure control during exercise, observed as a reduction in the variation of systolic blood pressure/MET (trandolapril: 10.7±1.9 mmHg/U vs 7.4±1.2 mmHg/U, p=0.02; captopril: 9.1±1.4 mmHg/U vs 11.4±2.5 mmHg/U, p=0.35), a reduction in peak diastolic blood pressure (trandolapril: 116.8±3.1 mmHg vs 108.1±2.5 mmHg, p=0.003; captopril: 118.2±3.1 mmHg vs 115.8±3.3 mmHg, p=0.35), and a reduction in the interruption of the tests due to excessive elevation in blood pressure (trandolapril: 50% vs 15%, p=0.009; captopril: 50% vs 45%, p=0.32). CONCLUSION: Monotherapy with trandolapril is more effective than that with captopril to control blood pressure during exercise in hypertensive patients.
Resumo:
We assessed the blockade of the renin-angiotensin system (RAS) achieved with 2 angiotensin (Ang) antagonists given either alone at different doses or with an ACE inhibitor. First, 20 normotensive subjects were randomly assigned to 100 mg OD losartan (LOS) or 80 mg OD telmisartan (TEL) for 1 week; during another week, the same doses of LOS and TEL were combined with 20 mg OD lisinopril. Then, 10 subjects were randomly assigned to 200 mg OD LOS and 160 mg OD TEL for 1 week and 100 mg BID LOS and 80 mg BID TEL during the second week. Blockade of the RAS was evaluated with the inhibition of the pressor effect of exogenous Ang I, an ex vivo receptor assay, and the changes in plasma Ang II. Trough blood pressure response to Ang I was blocked by 35+/-16% (mean+/-SD) with 100 mg OD LOS and by 36+/-13% with 80 mg OD TEL. When combined with lisinopril, blockade was 76+/-7% with LOS and 79+/-9% with TEL. With 200 mg OD LOS, trough blockade was 54+/-14%, but with 100 mg BID it increased to 77+/-8% (P<0.01). Telmisartan (160 mg OD and 80 mg BID) produced a comparable effect. Thus, at their maximal recommended doses, neither LOS nor TEL blocks the RAS for 24 hours; hence, the addition of an ACE inhibitor provides an additional blockade. A 24-hour blockade can be achieved with an angiotensin antagonist alone, provided higher doses or a BID regimen is used.
Resumo:
Sixteen patients with essential hypertension were treated for 2 consecutive 6-week periods with either the angiotensin-converting enzyme (ACE) inhibitor enalapril (20 mg once daily) or the calcium antagonist diltiazem (120 mg twice daily). The sequence of the treatment phases was randomly allocated. Blood pressure decreased from 154/102 +/- 5/2 mm Hg (mean +/- SEM) to 135/96 +/- 4/2 and 140/98 +/- 3/2 mm Hg during treatment with enalapril and diltiazem, respectively. It was impossible in the individual hypertensive patient to predict the long-term blood pressure response to one of the agents studied based on the long-term blood pressure response to the other agent.
Resumo:
In this review, we discuss the pharmacological and clinical properties of irbesartan, a noncompetitive angiotensin II receptor type 1 antagonist, successfully used for more than a decade in the treatment of essential hypertension. Irbesartan exerts its antihypertensive effect through an inhibitory effect on the pressure response to angiotensin II. Irbesartan 150-300 mg once daily confers a lasting effect over 24 hours, and its antihypertensive efficacy is further enhanced by the coadministration of hydrochlorothiazide. Additionally and partially beyond its blood pressure-lowering effect, irbesartan reduces left ventricular hypertrophy, favors right atrial remodeling in atrial fibrillation, and increases the likelihood of maintenance of sinus rhythm after cardioversion in atrial fibrillation. In addition, the renoprotective effects of irbesartan are well documented in the early and later stages of renal disease in type 2 diabetics. Furthermore, both the therapeutic effectiveness and the placebo-like side effect profile contribute to a high adherence rate to the drug. Currently, irbesartan in monotherapy or combination therapy with hydrochlorothiazide represent a rationale pharmacologic approach for arterial hypertension and early-stage and late-stage diabetic nephropathy in hypertensive type II diabetics.
Resumo:
The acute blood pressure response to an angiotensin converting enzyme inhibitor (enalaprilat) was compared in patients with uncomplicated essential hypertension with that obtained under similar conditions with a calcium entry blocker (nifedipine). The patients were studied after a 3 week washout period. At a 48 h interval, each patient received in randomized order either enalaprilat (5 mg i.v.) or nifedipine (10 mg p.o.). Enalaprilat and nifedipine were equally effective in acutely lowering blood pressure. However, good responders to one agent were not necessarily good responders to the other.
Resumo:
Whether a higher dose of a long-acting angiotensin II receptor blocker (ARB) can provide as much blockade of the renin-angiotensin system over a 24-hour period as the combination of an angiotensin-converting enzyme inhibitor and a lower dose of ARB has not been formally demonstrated so far. In this randomized double-blind study we investigated renin-angiotensin system blockade obtained with 3 doses of olmesartan medoxomil (20, 40, and 80 mg every day) in 30 normal subjects and compared it with that obtained with lisinopril alone (20 mg every day) or combined with olmesartan medoxomil (20 or 40 mg). Each subject received 2 dose regimens for 1 week according to a crossover design with a 1-week washout period between doses. The primary endpoint was the degree of blockade of the systolic blood pressure response to angiotensin I 24 hours after the last dose after 1 week of administration. At trough, the systolic blood pressure response to exogenous angiotensin I was 58% +/- 19% with 20 mg lisinopril (mean +/- SD), 58% +/- 11% with 20 mg olmesartan medoxomil, 62% +/- 16% with 40 mg olmesartan medoxomil, and 76% +/- 12% with the highest dose of olmesartan medoxomil (80 mg) (P = .016 versus 20 mg lisinopril and P = .0015 versus 20 mg olmesartan medoxomil). With the combinations, blockade was 80% +/- 22% with 20 mg lisinopril plus 20 mg olmesartan medoxomil and 83% +/- 9% with 20 mg lisinopril plus 40 mg olmesartan medoxomil (P = .3 versus 80 mg olmesartan medoxomil alone). These data demonstrate that a higher dose of the long-acting ARB olmesartan medoxomil can produce an almost complete 24-hour blockade of the blood pressure response to exogenous angiotensin in normal subjects. Hence, a higher dose of a long-acting ARB is as effective as a lower dose of the same compound combined with an angiotensin-converting enzyme inhibitor in terms of blockade of the vascular effects of angiotensin.
Resumo:
Aims/Hypothesis: Glitazones are powerful insulin sensitisers prescribed for the treatment of type 2 diabetes. Their use is, however, associated with fluid retention and an increased risk of congestive heart failure. We previously demonstrated that pioglitazone increases proximal sodium reabsorption in healthy volunteers. This study examines the effects of pioglitazone on renal sodium handling in individuals prone to insulin resistance, i.e. those with diabetes and/or hypertension. Methods: In this double-blind randomised placebo-controlled four-way crossover study, we examined the effects of pioglitazone (45 mg daily during 6 weeks) or placebo on renal, systemic and hormonal responses to changes in sodium intake in 16 individuals, eight with type 2 diabetes and eight with hypertension. Results: Pioglitazone was associated with a rapid increase in body weight and an increase in diurnal proximal sodium reabsorption, without any change in renal haemodynamics or in the modulation of the renin-angiotensin aldosterone system to changes in salt intake. A compensatory increase in brain natriuretic peptide levels was observed. In spite of sodium retention, pioglitazone dissociated the blood-pressure response to salt and abolished salt sensitivity in salt-sensitive individuals. Conclusions/Interpretation: Pioglitazone increases diurnal proximal sodium retention in diabetic and hypertensive individuals. These effects cause fluid retention and may contribute to the increased incidence of congestive heart failure with glitazones.
Resumo:
OBJECTIVE: To compare the pharmacokinetic and pharmacodynamic characteristics of angiotensin II receptor antagonists as a therapeutic class. DESIGN: Population pharmacokinetic-pharmacodynamic modelling study. METHODS: The data of 14 phase I studies with 10 different drugs were analysed. A common population pharmacokinetic model (two compartments, mixed zero- and first-order absorption, two metabolite compartments) was applied to the 2685 drug and 900 metabolite concentration measurements. A standard nonlinear mixed effect modelling approach was used to estimate the drug-specific parameters and their variabilities. Similarly, a pharmacodynamic model was applied to the 7360 effect measurements, i.e. the decrease of peak blood pressure response to intravenous angiotensin challenge recorded by finger photoplethysmography. The concentration of drug and metabolite in an effect compartment was assumed to translate into receptor blockade [maximum effect (Emax) model with first-order link]. RESULTS: A general pharmacokinetic-pharmacodynamic (PK-PD) model for angiotensin antagonism in healthy individuals was successfully built up for the 10 drugs studied. Representatives of this class share different pharmacokinetic and pharmacodynamic profiles. Their effects on blood pressure are dose-dependent, but the time course of the effect varies between the drugs. CONCLUSIONS: The characterisation of PK-PD relationships for these drugs gives the opportunity to optimise therapeutic regimens and to suggest dosage adjustments in specific conditions. Such a model can be used to further refine the use of this class of drugs.
Resumo:
BACKGROUND: Positron emission tomography (PET) during the cold pressor test (CPT) has been used to assess endothelium-dependent coronary vasoreactivity, a surrogate marker of cardiovascular events. However, its use remains limited by cardiac PET availability. As multidetector computed tomography (MDCT) is more widely available, we aimed to develop a measurement of endothelium-dependent coronary vasoreactivity with MDCT and similar radiation burden as with PET. METHODS AND RESULTS: A study group of 18 participants without known cardiovascular risk factor (9F/9M; age 60±6 years) underwent cardiac PET with (82)Rb and unenhanced ECG-gated MDCT within 4h, each time at rest and during CPT. The relation between absolute myocardial blood flow (MBF) response to CPT by PET (ml·min(-1)·g(1)) and relative changes in MDCT-measured coronary artery surface were assessed using linear regression analysis and Spearman's correlation. MDCT and PET/CT were analyzed in all participants. Hemodynamic conditions during CPT at MDCT and PET were similar (P>0.3). Relative changes in coronary artery surface because of CPT (2.0-21.2%) correlated to changes in MBF (-0.10-0.52ml·min(-1)·g(1)) (ρ=0.68, P=0.02). Effective dose was 1.3±0.2mSv for MDCT and 3.1mSv for PET/CT. CONCLUSIONS: Assessment of endothelium-dependent coronary vasoreactivity using MDCT CPT appears feasible. Because of its wider availability, shorter examination time and similar radiation burden, MDCT could be attractive in clinical research for coronary status assessment.
Resumo:
The purpose of this study was to compare in the individual hypertensive patient the blood pressure lowering effect of a beta-blocking agent i.e. betaxolol with that of a calcium entry blocker, i.e. verapamil. The antihypertensive efficacy of the drugs was evaluated both at the physician's office and by monitoring ambulatory daytime blood pressure using a portable blood pressure recorder (Remler M2000). Seventeen patients with uncomplicated essential hypertension (aged 35-67 years) were treated for two consecutive 6-week periods with either betaxolol, 20 mg/day or a slow-release formulation of verapamil, 240-480 mg/day. The sequence of treatment phases was randomly allocated and a 2-week wash-out period preceded each treatment. Both betaxolol and verapamil had a significant blood pressure lowering effect when assessed at the physician's office. However, ambulatory recorded blood pressures were significantly reduced only with betaxolol. In the presence of a physician, the best responders to betaxolol tended to be also the best responders to verapamil, whereas there was no relationship between the fall in ambulatory recorded blood pressure observed during betaxolol and the corresponding fall during verapamil administration. The blood pressure response to both betaxolol and verapamil was not related to age.
Resumo:
Tasosartan is a long-acting angiotensin II (AngII) receptor blocker. Its long duration of action has been attributed to its active metabolite enoltasosartan. In this study we evaluated the relative contribution of tasosartan and enoltasosartan to the overall pharmacological effect of tasosartan. AngII receptor blockade effect of single doses of tasosartan (100 mg p.o. and 50 mg i.v) and enoltasosartan (2.5 mg i.v.) were compared in 12 healthy subjects in a randomized, double blind, three-period crossover study using two approaches: the in vivo blood pressure response to exogenous AngII and an ex vivo AngII radioreceptor assay. Tasosartan induced a rapid and sustained blockade of AngII subtype-1 (AT1) receptors. In vivo, tasosartan (p.o. or i.v.) blocked by 80% AT1 receptors 1 to 2 h after drug administration and still had a 40% effect at 32 h. In vitro, the blockade was estimated to be 90% at 2 h and 20% at 32 h. In contrast, the blockade induced by enoltasosartan was markedly delayed and hardly reached 60 to 70% despite the i.v. administration and high plasma levels. In vitro, the AT1 antagonistic effect of enoltasosartan was markedly influenced by the presence of plasma proteins, leading to a decrease in its affinity for the receptor and a slower receptor association rate. The early effect of tasosartan is due mainly to tasosartan itself with little if any contribution of enoltasosartan. The antagonistic effect of enoltasosartan appears later. The delayed in vivo blockade effect observed for enoltasosartan appears to be due to a high and tight protein binding and a slow dissociation process from the carrier.
Resumo:
The purpose of this study was to assess the inhibitory effect of TCV-116, an orally active angiotensin II (Ang II) antagonist, on the pressor action of exogenous Ang II and to determine the compensatory rise in plasma renin activity and Ang II levels. Twenty-three male volunteers were treated for 8 days in a double-blind fashion with either placebo or TCV-116 (1, 2, or 4 mg PO daily) and challenged on the first, fourth, and eighth days with repeated bolus injections of Ang II. An additional 4 subjects received 8 mg PO daily in a single-blind fashion. The inhibitory effect on the systolic blood pressure response to Ang II was long lasting and clearly dose related. Six hours after 4 mg TCV-116, the systolic blood pressure response to a given dose of Ang II was reduced to 40 +/- 4% and 35 +/- 8% of baseline value on days 1 and 8, respectively. TCV-116 induced a dose-related increase in plasma renin activity and Ang II levels that was more pronounced on the eighth than on the first day of drug administration. Despite this compensatory mechanism, the relation between the time-integrated systolic blood pressure response to Ang II and the time-integrated CV-11974 levels, the active metabolite of TCV-116, was not different between days 1 and 8. In conclusion, TCV-116 appears to be a well-tolerated, orally active, potent, and long-lasting antagonist of Ang II in men.
Resumo:
Hypertension affects approximately 1 billion people worldwide. Owing to population aging, hypertension-related cardiovascular burden is expected to rise in the near future. In addition to genetic variants influencing the blood pressure response to antihypertensive drugs, several genes encoding for drug-metabolizing or -transporting enzymes have been associated with blood pressure and/or hypertension in humans (e.g., ACE, CYP1A2, CYP3A5, ABCB1 and MTHFR) regardless of drug treatment. These genes are also involved in the metabolism and transport of endogenous substances and their effects may be modified by selected environmental factors, such as diet or lifestyle. However, little is currently known on the complex interplay between environmental factors, endogenous factors, genetic variants and drugs on blood pressure control. This review will discuss the respective role of population-based primary prevention and personalized medicine for arterial hypertension, taking a pharmacogenomics' perspective focusing on selected pharmacogenes.